• <
    >
    advanced multilayer optics (AMO)
    We aim at pushing the frontiers of designing, fabricating and characterizing multilayer optics for sub-cycle control of infrared-to-ultraviolet laser light.
    Volodymyr Pervak — The optical multilayer structures have been driving the advancement of ultrafast laser technology towards ever broader bandwidth and ever shorter pulses. Deposition of dielectric layers with sub-nanometer accuracy permits manipulation of the spectral phase and amplitude of optical radiation over a full octave and beyond. With the help of design, fabrication, and characterization techniques defining the state of the art, We develop optical multilayers for wide-band light waveform synthesis all the way from the infrared to the ultraviolet.
    Volodymyr Pervak — The optical multilayer structures have been driving the advancement of ultrafast laser technology towards ever broader bandwidth and ever shorter pulses. Deposition of dielectric layers with sub-nanometer accuracy permits manipulation of the spectral phase and amplitude of optical radiation over a full octave and beyond. With the help of design, fabrication, and characterization techniques defining the state of the art, We develop optical multilayers for wide-band light waveform synthesis all the way from the infrared to the ultraviolet.
    WEBPAGE
  • <
    >
    Attosecond Science Laboratory @ KSU, Riyadh
    ASL is strongly interested in new applications of photonics, especially in the medical field. It aims to become a center of excellence, making a strong impact on the local and regional level, while earning the recognition of international scientific organizations.
    Abdallah Azzeer — Using isolated attosecond pulses of extreme ultraviolet light, we explore the ultrafast response of emerging materials, such as two-dimensional materials and organic semiconductors under intense light-field excitations for the development of novel ultrafast optoelectronic devices. In a multi-lateral collaboration with Attoworld, KSU and KAUST participate in developing electric-field molecular fingerprinting of human blood for the detection and diagnosis of diseases.
    Abdallah Azzeer — Using isolated attosecond pulses of extreme ultraviolet light, we explore the ultrafast response of emerging materials, such as two-dimensional materials and organic semiconductors under intense light-field excitations for the development of novel ultrafast optoelectronic devices. In a multi-lateral collaboration with Attoworld, KSU and KAUST participate in developing electric-field molecular fingerprinting of human blood for the detection and diagnosis of diseases.
    Website

A mobile version for attoworld.de is under construction.