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Abstract

A useful tool in the world of ultra fast physics is an optical waveform synthe-
sizer. This device takes a several octave spanning spectrum and splits it up
into individual channels. Each of them allows the compression of the narrower
spectral region. A subsequent combination delivers ultra short sub-cycle laser
pulses that are needed in the field of ultra fast physics. Within the framework
of this thesis, the generation of this necessarily octave spanning spectrum hap-
pens by sending a beam centred at a wavelength of 2 µm into a gas filled hollow
core capillary for spectral broadening. The generated supercontinuum covers
a range from 300 nm to 3000 nm. The aim of this thesis is to characterise it
with emphasize on how the gas, the pressure and the pulse energy influence the
spectral broadening. Of particular interest is the origin of a strong spectral peak
in the ultra violet, which is found out to be a dispersive wave. Accompanying
numerical simulations shall support the understanding of the measured spectra.
And since the next generation synthesizer, that is currently being built, will
also use a 2 µm beam for spectral broadening, the outcome of this thesis can be
utilized to determine the spectral range of the new generated supercontinuum.
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Introduction

Ultra fast physics is a field where phenomena, that happen on the time scale of
the oscillations of a light field, are discovered and explained. This, for example,
includes the observation of electron motions in atoms and molecules as well as
the deeper understanding of nonlinear interactions of light fields with different
kinds of media. All of this is only possible if some sort of measuring signal exists
that is short enough in time and has sufficient intensity. And it indeed does,
in form of ultrashort light pulses, where the electric field is described by a few
cycles of the oscillations of the light field. These pulses can even get so short
that they only consist of less than a period of the oscillating filed, thus building
a sub cycle transient.

The generation of ultrashort sub-cycle pulses is a challenging task. The laser
system used for the measurements of this thesis though can produce these pulses.
This starts with an optical parametric amplifier that delivers a beam centred
at 2 µm. The spectral bandwidth is however not large enough to enable sub-
cycle pulses. To broaden the spectrum to the extent to make single transients
possible, this beam is sent to a hollow core capillary waveguide, where the high
laser intensity causes spectral broadening and thus supercontinuum generation.

To finally deliver sub-cycle transients, the pulses need to be temporally com-
pressed since they are dispersed from the broadening process. This is a demand-
ing task, as the spectrum reaches now 300 nm to 3000 nm, so covering a range
of three octaves. The used tool to achieve this is called an optical waveform
synthesizer. With this device, the whole spectrum is split up into three chan-
nels. Each channel is compressed on its own, and if needed, can also be altered
by controlled applied dispersion. Therefore, the resulting pulse shape can be a
sub-cycle transient if all three compressed channels are combined or whatever
is possible given the rich variety of combinations.

The laser system currently used is operating at 3 kHz and the 2 µm beam
that is broadened has 1 mJ pulse energy. The next generation laser system also
delivers a beam at the same wavelength, but at a higher repetition rate of 50 kHz.
However, this beam should have a pulse energy of 80 µJ. Since the new laser
system is going to be equipped with an optical waveform synthesizer to make
use of its widespread applications, it needs to be determined if the necessary
broadening with less pulse energy can be achieved in order to have the same or
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better bandwidth than the currently used synthesizer. The aim of this thesis is
to characterize the supercontinuum that is generated if a 2 µm beam with 80 µJ
pulse energy is sent into a gas filled hollow core fibre. Of particular interest is
the comprehensive description of a spectral peak in the ultra violet, as it did
not happen yet. Both this detailed description and the whole analysis of the
super continuum is supported by numerical simulations.

The outline of this thesis is as follows: Chapter 1 starts with giving the
theoretical background to understand the processes that lead to the generated
supercontinuum including the peak in the ultra violet, which is called disper-
sive wave. It starts showing a mathematical description of ultra short pulses
and continuous by presenting an important equation, the generalized non linear
Schrödinger equation. This equation will be numerically solved to revise the
experimental measurements done and also to figure out if the used program is
capable of simulating the correct spectra. The chapter continues by explaining
the main processes that lead to the generation of a supercontinuum. This in-
cludes the mechanism of self phase modulation that is generally the reason for
broadening if a high intense pulse is sent into a gas filled hollow core fibre. But
it also includes the special case that is encountered here, where the input pulse
is a soliton that generates a resonant dispersive wave in the ultra violet.

Chapter 2 gives an overview of the system currently used. It describes how
the 2 µm beam is generated that is utilized to produce a supercontinuum that
is send to the current synthesizer. For this thesis, the beam is sent to another
system, build up just to characterize the generated spectrum. This setup is a
gas filled hollow core fibre, where both the gas pressure and the input pulse
energy can be adjusted. The output beam is captured by two spectrometers,
covering a range from 200 nm to 2500 nm.

Chapter 3 focuses on analysing the captured spectra. Two different kinds of
measurements were performed, during one the input pulse energy was changed
and in the other one the pressure. The evaluation happened by finding out how
the generation of the supercontinuum, including the dispersive wave, is depen-
dent on the gas, the pressure and the pulse energy. This made it possible to
understand the shape of the broadband spectrum entering the current synthe-
sizer, as well as to make a prediction of the spectrum that is used for the next
generation synthesizer that is part of the new system with 80 µJ pulse energy.

Chapter 4 discusses the viability of the utilized program to do the numerical
simulations of super continuum generation. For that, selected measured spec-
tra are compared to numerical solutions. Moreover, the simulated behaviour
of spectral broadening inside the fibre is examined and compared to what is
expected from a theoretical point of view.

The thesis ends with chapter 5. Here, the findings of the last two preceding
chapters are shortly summarized. Going on from that, the spectrum of the next
generation synthesizer and the possibility of generating a dispersive wave on
purpose is discussed.



Chapter 1

Theoretical Background

The purpose of this chapter is to provide the necessary theoretical background
to understand the most important physical principles that are covered by this
thesis. It starts with section 1.1 giving a mathematical description of ultrashort
pulses. To get a more detailed description [1] may be consulted. The propaga-
tion inside a medium of these pulses will be discussed in section 1.2. In the end,
an equation shall be given that describes what happens if a pulse is sent into
a gas filled hollow core fibre. This equation is solved numerically in chapter 4
to see if the result matches the measured spectra in chapter 3. To see a more
detailed derivation, it should be referred to [2] and [3]. This equation describes
different physical processes, which are addressed in the following. Section 1.3
covers the most important nonlinear processes that arise from high intensity
laser pulses. To get a more in depth understanding of the derivation of these
effects, [2], [3] and [4] should be read. To further better understand the origin of
the spectral peak in the ultra violet, something that will be observed in chapter
3, section 1.4 discusses what happens if linear dispersion and nonlinear effects
as in section 1.3 are interacting and thus making solitons and dispersive waves
possible. A more detailed description for that can be found in [2], [3], [4], [5],
[6], [7] and [8].

1.1 Description of Ultrashort Pulses

The field of an ultrashort pulse is completely described through a real valued
electromagnetic wave. Both the electric field and the magnetic field of such a
wave are not completely independent and can thus be derived from each other
by the Maxwells’s equations. In the following, a description of the electric field
only is given. Without simplifying too much, the field is only described by its
temporal component, so no spatial or polarization dependence. The electric
field E(t) in the time domain can be equivalently described in the frequency
domain. The complex field in the frequency domain Ẽ(ω) is obtained by using
the Fourier transform:
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Ẽ(ω) =
∫ +∞

−∞
E(t)e−iωtdt = |Ẽ(ω)|eiϕ(ω), (1.1)

where |Ẽ(ω)| is the spectral amplitude and ϕ(ω) is the frequency dependent
spectral phase. With the inverse Fourier transform, the real electric field E(t)
can be calculated form the given complex spectrum Ẽ(ω) :

E(t) = 1
2π

∫ +∞

−∞
Ẽ(ω)eiωtdω. (1.2)

To describe the propagation of a wave, it is useful to define a complex electric
field in time, which can be achieved in two ways:

Ẽ+(t) = 1
2π

∫ ∞

0
Ẽ(ω)eiωtdω = 1

2π

∫ +∞

−∞
Ẽ+(ω)eiωtdω. (1.3)

One way is to perform the Fourier transform of the complex spectrum only for
positive frequencies, the other way is to perform a full Fourier transform, but
define Ẽ+(ω) in a way that it is zero for all negative frequencies and equal to
Ẽ(ω) for all positive frequencies. In the same way Ẽ−(t) can be obtained by a
full Fourier transform of Ẽ−(ω). In this case Ẽ−(ω) is defined in a way that it
is equal to Ẽ(ω) for all negative frequencies and zero for all positive frequencies.
This gives

Ẽ(ω) = Ẽ+(ω) + Ẽ−(ω). (1.4)

With that it is possible to rewrite the electric field as

E(t) = Ẽ+(t) + Ẽ−(t). (1.5)

With Ẽ+(t) being a complex function, it is possible to express it as an
amplitude function A(t) multiplied by term containing the phase information
Φ(t):

Ẽ+(t) = A(t)eiΦ(t) = A(t)ei(ϕ0+ϕ(t)+ω0t). (1.6)

Here, the phase consists of three terms, namely ϕ0 being the carrier envelope
phase (CEP), ϕ(t) the time dependent phase and ω0 the carrier frequency. The
carrier frequency describes the oscillations of the electric field under the en-
velope. The relative phase between the envelope and the oscillating field is
described by the CEP. For ultrashort pulses, the CEP is an important value
since the maximum field amplitude depends on it, see figure 1.1.

The time dependent phase ϕ(t) is important for the instantaneous frequency,
which is defined as:

ω(t) = ω0 + d

dt
ϕ(t). (1.7)
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Figure 1.1: Envelope and electric field of an ultra short pulse with two different
values for the CEP.

As a consequence of this, the frequency of the carrier signal can vary in time as
the pulse propagates. A specific change of ω(t), by making certain assumptions
for ϕ(t), will be discussed in section 1.3.1 and 1.4.1.

Sometimes it is useful to describe the phase in the frequency domain. For
that, one can write Ẽ+(ω) in a similar way to equation 1.1 as:

Ẽ+(ω) = |Ẽ+(ω)|eiϕ(ω), (1.8)

where ϕ(ω) is the frequency dependent phase. Like the time dependent phase,
it can be expressed through multiple terms, as it happens by describing it by a
Taylor series around ω0:

ϕ(ω) = ϕ(ω0)+ d

dω
ϕ(ω)

∣∣∣∣
ω=ω0

(ω−ω0)+1
2

d2

dω2 ϕ(ω)
∣∣∣∣
ω=ω0

(ω−ω0)2+1
6

d3

dω3 ϕ(ω)
∣∣∣∣
ω=ω0

(ω−ω0)3+...

(1.9)
The first term describes the phase propagation of the electric filed, so the carrier
below the envelope. The second term, also called group delay (GD), describes
the propagation of the whole pulse, so the envelope. The third term is called
group delay dispersion (GDD). This and the following higher order terms de-
scribe the frequency dependent propagation of each individual wavelength com-
ponent of the electric field. If they are unequal zero, the pulse shape gets altered.
In section 1.4.1, the influence of the GDD on a pulse will be discussed in more
detail.
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1.2 Propagation of Ultrashort Pulses
So far, the electric field was just a function of time. For the propagation inside
of a medium, it is necessary to take a more universally valid approach. For that,
the electric field can have a polarization and is dependent of space coordinates.
In the case of cartesian coordinates, the electric field becomes E(x, y, z, t). To
describe the propagation of such a field, the Maxwell equations are needed. For
a medium that is source free, without currents (ρ = 0, J = 0⃗) and non magnetic,
the Maxwell equations will take the following form:

∇ · D = 0, (1.10)

∇ · B = 0, (1.11)

∇ × E = −∂B

∂t
, (1.12)

∇ × H = ∂D

∂t
, (1.13)

with the electric and magnetic flux density

D = ϵ0E + P , B = µ0H, (1.14)

where ϵ0 is the permittivity and µ0 is the permeability. With both of them the
speed of light in vacuum can be calculated by:

c = 1
√

ϵ0µ0
. (1.15)

From the Maxwell equations and the flux densities, a nonlinear wave equation
for the electric field can be derived and takes the following form:(

∇2 − 1
c2

∂2

∂t2

)
E(x, y, z, t) = 1

ϵ0c2
∂2

∂t2 P (x, y, z, t) (1.16)

where ∇ = ( ∂
∂x , ∂

∂y , ∂
∂z ) is the nabla operator. The polarization P on the right

hand side describes the materials response to an electric field of a light pulse. As
a consequence of this response, the electric field will be changed during propa-
gation through a medium. For very high intensity laser pulses, the polarization
can be split up in two terms

P = P L + P NL. (1.17)

The linear response of the material is represented through P L. Effects like dis-
persion, diffraction and linear attenuation are describes by this term. Nonlinear
effects, that occur only for high intensities, are represented through P NL. Some
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of these effects are discussed in more detail in section 1.3. It is further possible
to express the polarization in a series expansion, which gives for the case of an
instantaneous response:

P = ϵ0(χ(1)E + χ(2)E2 + χ(3)E3 + ...), (1.18)

where the first order term is the linear polarization and all higher order terms
are the nonlinear polarization. The χ(n) are the n-th order susceptibilities.

By neglecting all nonlinearities and applying a Fourier transform to 1.16,
one can get:

(
∇2 + n2(ω)ω2

c2

)
E(x, y, z, ω) = 0, (1.19)

which has the form of a Helmholtz equation, with n(ω) being the refractive
index following the relationship n2(ω) = 1 + χ(1)(ω). A plane wave approach
will give the following solution for propagation along the z-axis:

E(z, t) = E0ei(ω0t−k0z) (1.20)

with the wave number k0 = n2(ω0)ω2
0/c2 and ω0 the center angular frequency.

A more general approach is to include nonlinearities and using the frequency
dependent wave number β(ω), which leads to:

[∇2 + β2(ω)]E(x, y, z, ω) = − ω2

ϵ0c2 P NL(x, y, z, ω). (1.21)

To describe the propagation of a pulse inside a gas filled fibre, it first has to be
noted that all even order terms in the series expansion in 1.18 vanish since the
medium has inversion symmetry. To find a simpler expression, some assumptions
have to be made. These are: (i) the nonlinearities are weak compared to the
linear contribution to the polarization, (ii) the pulse is propagating along the z
direction and is linearly polarized, with the polarizations being conserved, (iii)
the dispersion is weak and iv) the slowly varying envelope approximation can
be applied, which requires ∆ω/ω0 << 1, with ∆ω the pulse bandwidth. Under
these conditions, the electric field can be expressed as:

E(x, y, z, ω) = F (x, y)A(z, ω)eiβ(ω)z. (1.22)

F (x, y) is the transverse mode distribution and can be expressed as the distri-
bution of a HEnm mode. A(z, ω) is the slowly varying mode amplitude.

With this expression for the electric field, starting from equation 1.21, a new
wave equation can be derived. This takes the form:

∂A

∂z
+ β1

∂A

∂t
+ i

β2
2

∂2A

∂t2 + α

2 A = iγ(ω0)|A|2A, (1.23)
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with βk = dkβ
dωk |ω=ω0 the Taylor expansion coefficients, α the attenuation constant

and γ the nonlinear coefficient. Both α and γ depend on properties of the
medium the pulse propagates through. An expression for them shall be given at
the end of this section. The proportionality of the nonlinear contribution on the
right hand side to |A|2A originates form the third nonlinear part in expression
1.18, which is the first nonlinear part in this case given the preconditions made
that all even orders vanish.

This equation describes the propagation of a pulse through a dispersive,
nonlinear medium. The dispersion goes up to the second order, the nonlinearity
is limited to χ(3) processes like self phase modulation (SPM), which is described
in section 1.3. With an appropriate coordinate transform it is possible to further
simplify this equation. By neglecting the attenuation α and setting τ = t −
z/vg, with vg the group velocity, the time frame changes to a copropagating
system that travels alongside the pulse. The result is the nonlinear Schrödinger
equation (NLSE) 1.44, which will be discussed in section 1.4.2. To treat the
propagation of laser pulses more properly, it is useful to use the generalised non
linear Schrödinger equation (GNLSE), which can take the following form:

∂A

∂z
= −α

2 A −
( ∞∑

n=2
βn

in−1

n!
∂n

∂tn

)
A + iγ

(
1 + 1

ω0

∂

∂t

)
|A|2A. (1.24)

Compared to equation 1.23 there are two changes. At first, the dispersion is
not limited to the second order, meaning that the full dispersion of the medium
can be taken into consideration. This is especially of importance for ultrashort
pulses since they are also ultra broadband. Second, an additional nonlinear
term appeared. This term describes the effect of self steepening, which will be
described in section 1.3. This equation can also contain more terms describing
additional effects, like the Raman response. But since only noble gases are used
for this thesis, this term is omitted. This equation will be solved numerically in
chapter 4 to simulate the supercontinuum generated and discussed in chapter 3.

Now the expressions for α, γ and β(ω) for the propagation of a gas filled
hollow core fibre shall be given. The attenuation constant has the form [9]:

α = 2
(

unm

2π

)2 λ2
0

2a3
ν2 + 1√
ν2 − 1

, (1.25)

where ν = nfibre/ngas is the ratio of the refractive index of the fibre cladding
and the gas. λ0 is the center wavelength of the laser and a the core radius
of the fibre. unm is the mth root of the Bessel function Jn−1(unm). For the
fundamental mode it is: u11 = 2.405. The nonlinear parameter is defined as [9]:

γ = n2ω0
cAeff

, (1.26)
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with ω0 the central angular frequency of the pulse, c the speed of light and
Aeff ≈ 0.48πa2 the effective mode area. n2 is the nonlinear refractive index and
is given by [7]:

n2 = n0
2

p

p0

T0
T

, (1.27)

with p and T the pressure in bar and the temperature in Kelvin of the gas,
p0 = 1 bar and T0 = 273 K. The values for n0

2 can be taken from table 1.1.
Since the nonlinear refractive index is also wavelength dependent, the following

Gas n0
2 (10−24m2/W) Ip(eV)

He 0.41 24.59
Ne 0.74 21.56
Ar 10.40 15.76
Kr 29.14 14.00
Xe 93.50 12.13

Table 1.1: Values of n0
2 at 800 nm and the ionization potential for different noble

gases [10], [11].

formula can be used to calculate n0
2 for different wavelengths [10]:

n0
2(ω) = νω′ − ωp

νω − ωp
n0

2(ω′), (1.28)

with ν = 3
2 and ωp the angular frequency of the connected ionization potential.

The dispersion of a gas filled hollow core fibre is given by [7]:

β(ω) = ω

c

√
n2

gas − u2
nmc2

a2ω2 , (1.29)

where the refractive index of the gas can be calculated with the following Sell-
meier equation [12]:

n2 − 1 = p

p0

T0
T

[
B1λ2

λ2 − C1
+ B2λ2

λ2 − C2

]
, (1.30)

with λ the wavelength in µm, p the pressure in bar, T the temperature in Kelvin,
p0 = 1 bar, T0 = 273 K and B1, B2, C1, C2 constants given in table 1.2

1.3 Nonlinear effects
It was already mentioned that a laser field with high intensity causes the ma-
terial to respond in a nonlinear way. To account for that, the polarization was
extended to also include higher order terms χ(n)En. These terms take the non-
linear response into consideration, since they are now of the order En and n can
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Gas B1 · 108 C1 · 106 B2 · 108 C2 · 103

He 4977.77 28.54 1856.94 7.760
Ne 9154.48 656.97 4018.63 5.728
Ar 20332.29 206.12 34458.31 8.066
Kr 26102.88 2.01 56946.82 10.043
Xe 103701.61 12.75 31228.61 0.561

Table 1.2: Constants of different noble gases for equation 1.30 [12]

be larger than 1. Generally, the χ(n) are complex tensors of rank (n+1). The
series expansion done in equation 1.18 requires an immediate response of the
material. By making this assumption and by observing that noble gases have
inversion symmetry, so that all even order terms vanish, the first and strongest
nonlinear term contributing to the nonliner polarization is:

PNL = ϵ0χ(3)E3. (1.31)

This equation shows that the resulting polarization will have oscillations build
up by E3. The frequency of the oscillating polarization is determined by adding
and/or subtracting the frequency of three waves that are part of the electric
field that goes through the medium. This process is called Four Wave Mixing
(FWM), since three input waves mix and create a new fourth wave. Besides
of energy conversation, which demands that the energy contained in the new
created wave is equal to the total energy of the original three waves, there is
also a so called phase matching condition. This requires that the wavevector of
the created wave is equal to the sum of the mixing waves. If a monochromatic
wave of the form E = E0(eiωt + e−iωt) is taken as the input for equation 1.31,
the resulting polarization will have two different frequency components. One
will oscillate at 3ω and one at ω. The first describes third harmonic generation,
since the new wave has three times the frequency. For this process, one has
to take account for phase matching. The latter describes the so called optical
Kerr effect. Here, the resulting frequency is equal to the incoming one and thus
phase matching is automatically fulfilled. For this case, equation 1.31 can take
the following form:

PNL = 3ϵχ(3)|E|2E. (1.32)
Since the Intensity can be written as I = 2n0ϵ0c|E|2, it can be seen that the
nonlinear polarization is proportional to the intensity of the incoming light pulse.
This results in an intensity dependent refractive index of the form

n = n0 + n2I, (1.33)
with n2 defined as in 1.27 and n0 the refractive index of a light beam without
a high intensity, so n0 =

√
1 + χ(1). This intensity dependence is also called

optical Kerr effect. There are several phenomena that follow from this behaviour
of n, which will be discussed in the following sections.
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1.3.1 Self Phase Modulation (SPM)

In order to understand the effect of SPM, it is useful to consider a plane wave
propagating along the z-axis: E(z, t) = E0ei(ωt−kz), with the wavevector k = ω

c n.
If equation 1.33 is taken as the refractive index n for this plane wave ansatz one
gets:

k = ω

c
n = ω

c
(n0 + n2I(t)). (1.34)

This results in the electric field

E(z, t) = E0ei(ωt− ω
c

(n0+n2I(t))z). (1.35)

If the light propagates the distance D, the phase shift due to the intensity
dependent refractive index is

ϕ(t) = −ω

c
n2I(t)D. (1.36)

The change of the spectrum can be derived by putting this into equation 1.7,
which leads to an instantaneous frequency of

ω(t) = ω0 − n2
ω

c

dI(t)
dt

D. (1.37)

From this it can be seen that the instantaneous frequency of the pulses carrier
changes as the time dependent intensity varies. If a pulse with Gaussian shape
is assumed, the leading part of the pulse would get red shifted, since dI/dt > 0
and as a result the frequency ω(t) gets smaller. For the trailing edge it is the
other way around. There, the frequency gets blue shifted, as dI/dt < 0. This is
shown in figure 1.2.

This change of the frequency leads to spectral broadening of the laser pulse,
since after SPM the pulse has more frequency components than before. The
spectrum of a Gaussian pulse can be seen in figure 1.3 for different propagation
distances. It is symmetric, so the shape of the blue shifted spectrum is the same
as for the red shifted part.

1.3.2 Self-Steepening

Another process that happens because of the intensity dependent refractive
index is self steepening. To understand this process, it is helpful to calculate
the group delay as it is defined in equation 1.9 as the first derivative of the phase.
By using equation 1.34 again, one obtains the phase ϕ = kD = ω0

c (n0+n2I(t))D
with D being the propagation distance one more time. This results in the group
delay:

∂ϕ

∂ω
= D

∂k

∂ω
= D

ω0
c

∂(n2I(t))
∂ω

= D

vgr
, (1.38)
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Figure 1.2: The change of the carrier of a Gaussian pulse due to SPM. On the
left, the original pulse can be seen. On the right, the carriers instantaneous
frequency changes according to the green curve, with a red shift on the left
(leading edge) and a blue shift on the right (trailing edge). At the center, the
instantaneous frequency is equal to ω0.

where the derivative of the wavevector k is defined as ∂k
∂ω = 1/vgr, with vgr the

the velocity of a pulse inside a medium, also called group velocity. Following
from this, the velocity of a pulse is inversely proportional to its own intensity.
This correlates with the refractive index being proportional to the intensity of
the pulse. This effect alters the pulse shape as the high intensity peak will be
slowed down, since it will experience a higher refractive index and thus a lower
group velocity. The edges on the other hand are not intense enough to change
the refractive index and will propagate with the original, faster group velocity.
Assuming again a Gaussian pulse, the following will happen: The peak, due to
the high intensity, will be slowed down. As the velocity of the edges will remain
unchanged, the peak starts to move towards the trailing edge, as it can be seen
in figure 1.4. With increasing propagation distance, the trailing edge becomes
steeper and steeper, until a point it reached when it is vertical and the pulse
will break up. This event is then called optical shock.

Not only the pulse shape in time is affected by self steepening, also the
spectrum gets altered. Due to SPM, which happens in parallel to self steppening,
the spectrum is broadened symmetrically, as it was shown in figure 1.3. However,
due to the contribution of self steepening, the spectrum becomes asymmetrically.
Self steepening now extends the spectral range in the higher frequency region,
by also lowering the spectral amplituden as it is illustrated in figure 1.5. This is
explained through the form of the trailing edge. In order to have a steep edge in
the time domain, much more high frequency components are needed than low
frequency components. And since the power contained the this blue part is the
same as in the red part, the spectral amplitude decreases.
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Figure 1.3: Spectrum of a Gaussian pulse as it propagates through a medium
and gets broadened due to SPM. The spectrum is symmetric to the center at
ω0.

1.3.3 Self Focusing

So far, the effect of the intensity dependent refractive index only changed the
pulse spectrum and envelope due to the temporal intensity profile. But also
the spatial distribution can change due to this effect. If the beam has a higher
intensity at the center, then this part will see an increased total refractive index
compared to the rest of the beams spatial profile. As a result, the material
will behave like a lens and the beam will start to focus. This can go on and
on until the diffraction of the beam, whose strength increases as the beam is
focusing, will compensate for the focusing effect. The state when the diffraction
and the focusing cancel each other out is then called self-trapping, since the
beam diameter will stay unchanged during propagation. The critical parameter
for this to happen is the so called critical power for self focusing, which is given
by [3]:

Pcr = π(0.61)2λ2
0

8n0n2
. (1.39)

If the power of the beam reaches this value, then self-trapping can occur. If
the power is much larger, than the beam will break up in many transverse
distributed beams, with each of them having the critical power.

1.4 Soliton dynamics

1.4.1 Dispersion

Now it shall be discussed a bit more in detail what happens to a pulse if it
propagates through a dispersive medium. For that, the frequency dependent
refractive index and therefore the frequency dependent wavevector are needed.
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Figure 1.4: Self steepening of a Gaussian pulse. The original pulse (solid line)
gets steeper with propagation distance (dashed line). Close to the optical shock
the trailing edge is almost vertical (dotted line).

With that, the phase for each frequency component of the pulse can be eval-
uated. It was shown in equation 1.9 that the phase can be described in in a
Taylor series. By using the relationship between the phase and the wavevector
ϕ = βD = ω

c nD, with the the propagated distance D, one can also do a Taylor
expansion of β(ω), which gives:

β(ω) = β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + 1

6β3(ω − ω0)3 + ... (1.40)

with the beta coefficients:

βn = dn

dωn
β(ω)

∣∣∣∣
ω=ω0

. (1.41)

Each of these beta coefficients have a different impact on the pulse. The first
two terms were already mentioned in section 1.1. The zero-order term describes
the phase velocity. This value gives information about how fast the phase in-
formation of a pulse travels. The first order term describes the group velocity,
which is the speed of the pulse itself. What was not discussed yet are the second
and higher order terms. These are of particular interest since they can alter the
shape of the pulse. The second-order term is called group velocity dispersion
(GVD), and it describes how the group velocity changes with frequency. This
is a result of the dispersion relation, so the fact that the refractive index is
frequency dependent. If the value for the GVD is unequal zero, it means that
waves with different frequencies travel at different speeds. Due to that, the pulse
end up being chirped. Depending of the sign of β2, either the red frequencies are
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Figure 1.5: The antisymmetric spectrum of a Gaussian pulse after SPM and self
steepening. The blue part of a symmetric spectrum from SPM gets stretched
to support the steep trailing edge in the time domain.

faster or the blue ones. It is convention to speak of normal dispersion if the red
components are leading and the blue ones are trailing. This leads to a positive
chirp. In this case β2 > 0. In the other case, it is called anomalous dispersion,
here β2 < 0 and the blue frequencies are in the leading edge of the pulse and the
red are trailing, which leads to a negative chirp. This can be seen in figure 1.6.
Both normal and anomalous dispersion will stretch the pulse, since each wave is

Figure 1.6: On the left β2 > 0, so the red frequency are leading and the pulse
gets a positive chirp. On the right β2 < 0, so the red frequencies are trailing,
which gives the pulse a negative chirp.

travelling with its own speed. For gas filled hollow core fibres, as they are used
in this thesis, there will be a wavelength region where the dispersion is normal
and a region where it is anomalous. In-between there is a point where the GVD
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will reach a value of zero. This is called the zero-dispersion-wavelength (ZDW),
and describes which wavelength will propagate without dispersion.

This is dispersion due to the linear part of the polarization. But it was also
shown in section 1.3.1 that the nonlinear contribution of SPM can change the
pulse phase in a comparable way, namely that the pulse gets a positive chirp.
In difference to normal dispersion, here the high intensity causes a phase shift.
In the case of linear dispersion, only the materials properties causes different
frequencies experiencing different phase changes. The interesting case of a high
intensity beam propagating though a material where the pulse lies in the anoma-
lous liner dispersion regime and also experiences SPM will be discussed in the
next subsection. If a pulse propagates through a medium, it is useful to estimate
the change to it coming from linear dispersion and nonlinear effects. For that,
two length scales exist, which describe roughly after which propagation distance
the pulses phase gets altered. These are the dispersion length

LD = τ2
0

|β2|
, (1.42)

and the nonlinear length
LNL = 1

γP0
, (1.43)

with τ0 describing the duration and P0 the peak power of the input pulse. If
the propagation length reaches one of these lengths, the connected effect will
affect the pulse. If the two length scales are comparable with the propagation
length, both will simultaneously change the pulse. This will be the case in the
next subsection.

1.4.2 Solitons

It was mentioned in section 1.2 that one can arrive at the nonlinear Schrödinger
equation if only linear dispersion and SPM are affecting a propagating pulse.
The equation has the form:

∂A

∂z
= −i

β2
2

∂2A

∂T 2 + iγ|A|2A. (1.44)

There are several special solutions to this equation that all describe the same
type of pulses: optical solitions. These solitons have the unique property that the
pulses shape either remains unchanged during propagation or it oscillates, but
always reaches the original pulse shape after a specific distance. The fundamen-
tal soliton never changes the shape. All higher order solitions will periodically
change the shape, both in time and frequency domain. But after one oscillation
they will come to the starting shape. This behaviour is shown in figure 1.7. The
soliton order can be expressed as a function of the dispersion length LD and the
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Figure 1.7: On the left, the propagation of a first order soliton is shown, where
the shape never changes. On the right, a full oscillation of a second order soliton
is shown.

nonlinear length LNL from section 1.4.1:

N =
√

LD

LNL
. (1.45)

The behaviour of a soliton can be understood by taking a look again at how
SPM and linear dispersion change the pulse. It was mentioned that SPM causes
a positive chirp of a propagating pulse. If there is in addition normal dispersion
the pulse would be even more chirped, so a soliton would not be possible under
these conditions. But if the linear dispersion is anomalous, the negative chirp
can compensate the positive chirp coming from SPM. Under these conditions a
soliton can exist. For the fundamental soliton, SPM and dispersion compensate
each other exactly. For higher order solitions, there is an interplay between
them, which results in oscillations. What all the higher order solitons have
in common, is that at first the spectum is broadened due to SPM. Then the
negative dispersion compensates for the positive chirp induced by SPM and the
pulse will be compressed. Since the spectrum is more broadband now, the pulse
will be shorter than in the beginning. With only SPM and dispersion up to
β2, the pulse would reach a point of maximum spectral width and so a point of
maximal temporal compression and then continues with the oscillating process
until the original pulse shape and spectrum is reached. But in a system like a gas
filled hollow core fibre, there are additional processes like self steepening and also
higher order terms for the dispersion, starting from β3, are not zero. This has
a strong impact on the behaviour of soliton propagation. For a solition of order
N > 1, in the beginning of the propagation there will be broadening through
SPM and self compression due to the negative dispersion. But as the pulse
spectrum gets broader and broader and the pulse gets shorter and shorter in
time, the pulse will break up at some point. During the break up the higher order
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soliton will merge into several lower order solitons. This process is therefore also
called soliton fission and the associated length scale is given by:

Lfiss = LD

N
=

√
LDLNL (1.46)

While broadening happens and the fission has not occurred yet, the spectrum
can extend till the normal dispersive region of the hollow core fibre. This region
covers all wavelengths that are smaller than the zero dispersion wavelength, and
thereby also smaller than the pulses spectrum in the beginning is. Due to the
higher order dispersion coefficients, the phase velocity for a small spectral region
in the normal region can overlap with the phase velocity of the soliton pulse. In
other words, the phasematching conditions are given in this case. This leads to
a resonant transfer of energy from the soliton in this so called dispersive wave,
hence the name resonant dispersive wave (RDW). The name originates form the
fact that the wave is propagating in the normal dispersion region of the fibre.
The necessary phasematching condition for this process is:

β(ω) − βsol(ω) = β(ω) − β(ω0) − β1(ω0)(ω − ω0) − Φ = 0. (1.47)

with β(ω) describing the linear mode propagation constant, so the wavenumber
as in section 1.4.1 and ω0 the center angular frequency of the soliton. Φ is a
phase terms that describes the additional phase a soliton has. By solving the
NLSE one can show that this term is equal to [5]

Φ = γP0
2 , (1.48)

with P0 the peak power of the soliton. If the temporal compression of the
soliton is taken into account, the peak power can be replaced by the peak power
of the compressed pulse Pc = P0Fc [6]. With the compression factor given
by Fc ∼ 4.6N , which is obtained from simulations, the resulting phase term
becomes:

Φ = 2.3NγP0. (1.49)
By introducing a shock-term ω/ω0 [13], one can get the following expression for
the phase term:

Φ = ω

ω0
γP0. (1.50)

If self compression is assumed once again one can replace the term for the peak
power with 4.5NP0 [8], it results in:

Φ = 4.5N
ω

ω0
γP0. (1.51)

With the phasematching condition given in equation 1.47 and the correct choice
of Φ, the wavelength of the dispersive wave can be estimated. In chapter 3
equation 1.47 is solved with the terms 1.48, 1.49 and 1.51 and the result is
compared to the measurements.



Chapter 2

Experimental System

This chapter starts with section 2.1 giving a brief overview of the complex
system placed at the Max-Planck-Institute of Quantum Optics that delivers the
laser beam that is used for spectral broadening. It starts with an oscillator
generating a beam that undergoes several amplification stages. It results in a
2 µm laser beam. This light can be sent to three different systems. One of
them is the already existing synthesizer that needs it for spectral broadening.
Another setup is the hollow core fibre (HCF) system built up for this thesis
with the purpose of super continuum generation and spectral characterization
of which. This will be described in more detail in section 2.2.

2.1 Light Source

Figure 2.1: Schematic overview of the laser system delivering the 2 µm beam
used for spectral broadening.

The first stage of the laser system, which is illustrated in figure 2.1, is a
commercial Ti:Sapphire oscillator (Femtolasers, Rainbow II). The output pulse
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train has a repetition rate of 78 MHz and a pulse energy of 3.5 nJ. Most of
the energy is contained in a spectral region around 780 nm, only a very small
part in the remaining spectrum that goes up to 1030 nm. The 780 nm light is
sent as a seed to a multi-pass amplifier, based on Chirped Pulse Amplification
(CPA). The output pulse energy of this amplifier is 0.8 mJ with a repetition
rate of 3 kHz. Only 5 % of the beam is sent to a HCF for spectral broadening,
the rest is used in other experiments. The HCF is 30 cm long and is filled with
Krypton at 2.3 bar. The resulting white light is temporally compressed by pairs
of chirped mirrors and then sent to a beta barium borate (BBO) crystal for intra
pulse difference frequency generation (DFG). This NIR light is centred at 2 µm
and is the seed for the following amplifier, which is based on optical parametric
chirped pulse amplification (OPCPA) [14]. Due to DFG, the generated beam
is also CEP stable. The residual white light passing the DFG process is sent
directly to an experimental system. The necessary pump beam to amplify the
2 µm light inside the OPCPA originates from the 1030 nm light coming from the
oscillator. This portion of light is sent to a regenerative thin disk Ytterbium-
doped Yttrium Aluminium Garnet (Yb:YAG) amplifier [15]. This amplifier
creates the pump beam with 16 mJ pulse energy at 3 kHz repetition rate for the
OPCPA process.

The 2 µm that enters the OPCPA goes first to an acousto-optic programmable
dispersive filter (Dazzler, Fastlite). With that device, the CEP of the diffracted
beam can be changed as well as the phase up to several higher orders. This beam
is then used as a seed for the OPCPA. This amplifier consist of two stages. The
first stage is built up by a periodically poled lithium niobate (PPLN) crystal.
20 % of the pump beam is sent to this stage. The other 80 % can be sent to the
scond stage, which is built up by two BBO crystals. The final pulse can contain
an energy of up to 1 mJ and is only 15 fs short. It is also possible to send less
pump power to the second stage, thus reducing the power of the amplified NIR
beam. This is necessary for this thesis, as one goal is to characterize the spectral
broadening generated by a beam that has only 80 µJ pulse energy.

The NIR light can be sent to three different systems. One of them gives the
opportunity to measure not only the electric field of a light pulse in time but
also in space. Since the working principle is based on electro optic sampling
(EOS), the system is called electro optic imaging (EOI) [16]. For this thesis,
the NIR pulse was measured just in time by using this system. For that, the
2 µm beam and the residual white light as a sampling pulse were sent to the
EOI setup. The measured pulse is shown in figure 2.2, alongside the spectrum
that was achieved through a Fourier transform of the electric field.

The beam can also be sent to the already existing optical waveform syn-
thesizer [17]. The name of this device has the origin in the fact that a beam,
spectrally broadened in a HCF, is split up into three different channels. Each of
them covers another spectral region and is compressed by its own set of chirped
mirrors. The channels are combined, so synthesized, at the end, delivering an
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Figure 2.2: The electric field obtained by EOS of the 2 µm beam used for spectral
broadening. The spectrum is calculated by a Fourier transformation of the
electric field.

ultra short pulse having an ultra broadband spectrum spanning from less than
300 nm to above 3000 nm. The broadening happens in a HCF which is 30 cm
long. The gas is air at atmospheric pressure and the full power of the OPCAP
is used, so a pulse energy of 1 mJ. A HCF is also used for super continuum gen-
eration of the next generation synthesizer. The setup which is able to generate
and measure a comparable super continuum by using less pulse energy, namely
80 µJ, is is the topic of the next section.

2.2 Spectral Broadening Setup

The system for spectral broadening consists of two parts. The first part, shown
in figure 2.3, focuses on focusing the beam into the fibre as well as the fibre itself.
The second part is for measuring the generated spectrum. In order to focus the
beam, it is necessary to determine the required focus size. By assuming that the
incoming beam is described through a fundamental Gaussian mode TEM00 and
that the beam inside the fibre is a fundamental hybrid mode EH11, the necessary
beam waist is given by w = 0.65a, where a is the core radius of the fibre [18].
For a core diameter of 200 µm, the necessary beam diameter is 2w = 130 µm.
The measured gaussian beam diameter, obtained from a CMOS camera (Cinogy
CinCam CMOS-1202), was w = 93 µm. Since the upper wavelength limit for
that camera is 1320 nm, two photon absorption was assumed. This happened
for the reason that the spectrum of the input beam starts at around 1600 nm,
as it can be seen in figure 2.2. So a correction factor of

√
2 has to be multiplied,

which results in the beam diameter being 2w = 131 µm. Focusing was done by
a pair of curved silver mirrors in front of the fibre. To improve the stability
of the broadening process, a beam positioning system, including two motorized
mirrors and two detectors, was installed (TEM µaligna). A wire grid polarizer
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was placed in the beam path to clean the polarization of the beam going to
the fibre. In addition to that, a 10 mm thick piece of Sapphire was added to
compress the puls. Furthermore, the the acousto-optic modulator of the OPCPA
was used to fine tune the dispersion of the pulse with the goal to improve the
compression and therefore spectral broadening.

Figure 2.3: Layout of the system used for spectral broadening. A 2 µm beam
with positioning stabilization is focussed into a gas filled HCF. The polarizer
cleans the polarization of the beam and the Sapphire compresses the pulse in
time.

The HCF was put in a V-grove holder. This holder lies in a vacuum tube
that can be filled with different gases at different pressures. The entrance and
exit windows are made out of 1 mm thick magnesium fluoride. The length of
the fibre was chosen to be 30 cm, the same as for the existing synthesizer. The
core diameter was reduced from 250 µm to 200 µm. The reason for that was to
increase the peak intensity, and thus broadening, since the pulse energy of 80 µJ
for the new synthesizer is less than the 1 mJ used for the already existing one.
To additionally increase the broadening, the tube and so the fibre was filled with
Argon or Krypton at different pressures.

The second part of the system deals with measuring the generated super-
continuum. The measurement happened in two different ways, called method A
and B. This is shown in figure 2.4. Both have in common that a moveable ther-
mal power meter (Thorlabs S401C) was installed so that the transmitted power
can be acquired. An iris was put in the beam path to cut off the outer part of
the beam. Since the spectrum for the current synthesizer ranges at least from
300 nm to 3000 nm, two spectrometers were needed to capture nearly the whole
spectrum. The two used spectrometers are a VIS & UV spectrometer (OceanIn-
sight, HDX) covering a range from 200 nm to 1000 nm and a NIR spectrometer
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(OceanInsight, NIRQuest) for the wavelengths from 1000 nm to 2500 nm. To
combine the spectra from the two devices into a single full range spectrum, an
additional calibration setup was needed. This is described in the end of this
section. To attenuate the beam coming out of the fibre, it was reflected by glass
wedges. The difference between these methods is, that for method A the diver-
gent beam was just attenuated and sent to the spectrometers. For method B,
the outcoming beam was imaged onto the spectrometers by using a curved UV
enhanced aluminium mirror. The advantage of method A is that the reflectivity
of the wedges should not change much across the whole spectrum, whereas for
method B the spectrum can be changed due to the reflectance at the aluminium
mirror. The advantage of method B is that the measurement can be more stable
since the output of the fibre is imaged at the spectrometer entrance, whereas
for method A the divergent beam is entering the spectrometer.

Figure 2.4: The two methods A and B for measuring the generated spectrum.
(a) For method A the divergent beam is sent directly to the spectrometers,
where one glass wedge can be moved to send the beam to either one of them.
(b) For method B the output of the fibre is imaged onto the spectrometers by
using a curved mirror. Both setups use glass wedges for attenuation, a power
meter for transmission acquisition and an iris to let only the central part of the
beam pass.

In order to combine the two single spectra captured by the two different
spectrometers, an additional setup was needed to match them so that the mea-
sured intensity given by one spectrometer is comparable to the intensity of the
other one. The system is shown in figure 2.5. The aim is to measure the powers
contained in small spectral regions across the whole spectrum. From this, a
spectrum can be obtained where the amplitude is determined by the readout
of the power meter. Then, the complete spectrum is measured with each of
the spectrometers. The resulting two spectra are finally fitted to the power
spectrum, which makes a combination of the following individual spectra into
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Figure 2.5: Setup used to match both spectrometers. A Pellin-Broca prism
disperses the beam so that the power that is contained in a small spectral region
can be measured.

one ranging from 200 nm to 2500 nm possible. This procedure requires that the
beam is split up in a way that only a small spectral part can be measured. This
happens by a Pellin-Broca prism (Thorlabs ADBU-20). The special geometry
of this prism redirects one wavelength of the dispersed light beam in a 90° angle
compared to the input beam, whereas the incoming angle defines that specific
wavelength. So by rotating the prism, the wavelength that is deflected by 90°
can be chosen. An additional slit narrows the spectral region that is metered
by both the spectrometers and the power meter. To get the needed power spec-
trum, the prism is rotated step by step and each time the spectrometers are used
to determine the spectral range and the power meter to obtain the contained
power. From that, the power spectrum for matching the two spectrometers can
be calculated.



Chapter 3

Characterization of Spectra

In this chapter, the acquired spectra are analysed. By using the measuring
techniques described in the last chapter, namely method A and B in figure
2.4, six measurement series were performed. For both Argon and Krypton, the
pressure and the input pulse energy were varied separately. For the pressure
scan, the supercontinua were captured according to both methods. The spectra
of the energy scan were only recorded with method A. The analysis starts with
the pressure scan and continues with the energy scan.

3.1 Pressure Scan

The pressure scan was done by the two different methods. The pressure range
was 0.8 bar to 3 bar for Argon and 0.3 bar to 2 bar for Krypton. The pulse en-
ergy was set to 80 µJ to make an estimation of the spectrum used in the next
generation synthesizer easier. Since the shape of the spectra taken with both
methods are comparable, only spectra from method A are shown. Additionally,
not every spectrum taken at every pressure step is shown to make a clear pre-
sentation of the data. Every spectrum, at every pressure step and from both
methods, was however analysed when it came to determine the spectral position
of peaks. To compare the output spectra with the input, the spectrum of the
OPCPA was taken with the same NIR spectrometer that was used to measure
the supercontinua and is plotted in figure 3.1.

3.1.1 Argon

Before looking at the spectra, it should be checked that neither self focusing
nor ionization is happening, as both processes can influence supercontinuum
generation. If a Gaussian pulse shape is assumed, the resulting peak power of
the input pulse is:

P0 = 0.94 · 80 µJ
15 fs = 5 GW. (3.1)
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Figure 3.1: The spectrum of the input pulse coming from the OPCPA obtained
using the same spectrometer that was used to measure the NIR part of the
generated supercontinua.

According to 1.39, the critical power for self focussing at maximum pressure is:

P sf
cr,Argon = π · (0.61)2 · (2000 nm)2

8 · (1.0008) · (9.4 × 10−24m2/(W · bar)) · 3 bar = 20 GW. (3.2)

A critical power for ionization can be estimated by considering the over the
barrier ionization intensity. This intensity marks the threshold where the electric
field of the laser pulse is strong enough to lower the atomic potential barrier so
far that the electron can escape classically [11]. With the relationship Pcrit =
IcritAeff , where Aeff = 0.48πa2 is the effective mode area from chapter 1 and
Icrit the critical intensity, the critical power for above barrier ionization is given
by:

P ion
cr = 4 × 1013 · (Ip[eV])4W/m2 · Aeff , (3.3)

with Ip the ionization potential from table 1.1. This results for the critical
ionization power of Argon to be

P ion
cr,Argon = 4 × 1013 · (15.76)4W/m2 · 0.48 · π · (100 µm)2 = 37 GW. (3.4)

These two critical powers are greater than the pulse peak power, so the corre-
sponding effects can be neglected at first. It should be noted though that the
peak power can increase as the pulse experiences self compression and ionization
can happen at even lower intensities due to tunnel ionization [19]. Ionization
by tunnelling can happen earlier as the potential barrier is again lowered due to
the laser pulse, but only as much as quantum mechanical tunnelling can cause
electrons to escape the potential.

The evaluation of the spectra starts with figure 3.2, where three spectra for
broadening in Argon at the lower pressure range are shown. In comparison with
the input spectrum, broadening is clearly visible. The spectrum is extended in
both the longer and shorter wavelength regime. This is due to the intensity
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Figure 3.2: Spectra for broadening in Argon from 0.8 bar to 1.7 bar.

dependent nonlinear refractive index and thus a result of SPM and self steep-
ening. The fringes close to 1000 nm arise from interferences of the broadened
spectrum and residual light coming from the OPCPA. Since the strength of spec-
tral broadening depends on the nonlinear parameter, which is linearly pressure
dependent, the broadening increases as the pressure does. This can be seen in
figure 3.3, where spectra at higher Argon pressures are shown. The broadening

Figure 3.3: Spectra for broadening in Argon from 1.8 bar to 2.2 bar.

gets stronger as the pressure increases, now reaching the VIS region of light
and the UV. In parallel, the intensity of longer wavelengths is intensified. At
the same time, the NIR part of the input pulse is altered due to SPM and self
steepening, leading to a decreased spectral intensity and an additional spectral
reshaping. Starting from 1.8 bar, the spectrum also starts to have another new
spectral feature, a resonant dispersive wave in the UV. A prerequisite for this is
that the input pulse lies in the anomalous dispersion region of the Argon filled
fibre. To verify this, the spectrum at 2.2 bar and the corresponding GVD curve
are plotted in figure 3.4, alongside the ZDW for the full pressure range.

It can be taken from this figure that the input spectrum is indeed in the
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Figure 3.4: On the left is the spectrum for broadening in Argon at 2.2 bar with
the associated GVD curve. On the right is the ZDW for the entire pressure
range of the scan performed with Argon.

anomalous spectral region of the HCF and the newly created wave is in the nor-
mal dispersion regime, hence the name dispersive wave. It is also shown that the
ZDW is always smaller than the lowest wavelength of the input spectrum, the
pulse is located within the anomalous dispersion region for the entire pressure
range. To further confirm the presence of a dispersive wave, the characteristic
length scales, that give an estimation after which distance effects due to disper-
sion and nonlinear interaction occur, as well as the soliton order of the input
pulse, are shown in figure 3.5. It is no surprise that the nonlinear length is

Figure 3.5: The left figure shows the dispersion, fission and nonlinear length as
introduced in chapter 1.4 in the case of an Argon filled HCF. On the right hand
side the related soliton order is plotted.

smaller than the fibre length of 30 cm for every pressure, since there is spectral
broadening on every shown spectrum. Additionally, the stronger broadening
with increasing pressure is reflected by the the negative slope of the nonlinear
length curve. The positive slope of the dispersion length curve however is ex-
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plained by the position of the ZDW, as it comes closer to the input pulse and
thus reduces the absolute value of the GVD at the center wavelength. In section
1.4.2 it was mentioned that a soliton order of N > 1 is necessary for the build
up of a RDW. This condition is fulfilled in this case as the nonlinear length
is smaller than the linear length. If both lengths were equal, the soliton order
would be N = 1, and the pulse would propagate through the fibre without any
change. But since the nonlinear length is smaller, the input pulse starts with
being spectrally broadened by SPM in the beginning of propagation. Then com-
pression through the anomalous dispersion of the fibre follows. This interplay
goes on and on, producing a shorter and more broadband pulse than at the
input. The higher order dispersion is then responsible for the pulse to break up
at some point. This specific point is described by the fission length and it is also
plotted in figure 3.5. At 1 bar, the fission length reaches 30 cm and goes down to
18 cm at 3 bar. The increasing spectral intensity of the RDW in figure 3.3 can
be explained by the fact that the fission point moves towards the fibre entrance.
For the lower pressure range, the point of fission is behind the fibre exit, leading
only to a limited transfer of energy to the RDW. A prerequisite for the build up
of a dispersive wave is that the spectrum is broadened enough to reach the wave-
length of the dispersive wave. If the spectrum is not broadened enough before
the fibre ends, there will not be a RDW. For an increasing pressure, the point
of fission moves towards the fibre input. This means an increase in the length
over which the energy transfer to the dispersive wave happens, as the beginning
of the build up also starts earlier. The maximum resonant energy transfer can
be reached if the fission happens at the output of the fibre or before. A point
close to this is reached at 3 bar, as it can be seen in figure 3.6. The spectrum

Figure 3.6: Spectra for broadening in Argon from 2.3 bar to 3 bar. The inset
shows the spectrum in the region from 500 nm to 1500 nm to highlight the re-
duced overall broadening at higher pressures.

at 3 bar shows a strong RDW. Although this alone is not a sign for fission, the
broadened spectrum between the input pulse and the RDW is weaker than for
lower pressure. This is shown in the inset of figure 3.6. This is indeed a sign
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that the fission happened inside the fibre, as only the higher order input soliton
can support a broadband spectrum that reaches the wavelength of a RDW. But
after the break up, the remaining solitons can not support the broad spectrum,
which results in a decrease of spectral intensity of the broadened part. Fission
happens inside of the fibre for pressures between 2.3 bar and 3 bar according to
the measurements. The calculated fission length moves from 20 cm to 18 cm for
these pressures, so the calculated values are smaller than the real fission length.

The wavelength of the RDW can be estimated by using the equation for
phasematching 1.47, given in section 1.4.2. Solving for the wavelength hap-
pened by using the different phase terms 1.48, 1.49 and 1.51. The measured
wavelengths of the RDW, form both methods A and B, as well as the results
from solving the phasematching condition, are illustrated in figure 3.7. The

Figure 3.7: On the right, the RDW wavelength is plotted when the terms 1.49
and 1.51 are used in the phase matching condition for an Argon filled HCF. On
the left, the measured RDW position is shown from both methods A and B, as
well as the result from solving the phase matching condition. For that, term
1.48 and by correction factors multiplied terms 1.49 and 1.51 were used.

first thing to notice is the offset of 20 nm ∼ 30 nm between both measurement
series. This is originating from the varying input power from the OPCPA, as
the measurements were done on two different days. The second thing to notice
is that only the phase term γP0/2 gives promising results. The other two terms,
2.3NγP0 and 4.5NγP0ω/ω0, give wavelengths that are considerably off as it can
be seen from the right hand side of figure 3.7. The second term even predicts
a decrease of the wavelength with increasing pressure. This however can be
changed by multiplying 1/10 with the first term and 1/100 with the second
term. The predicted RDW wavelength is then much closer to the measured val-
ues. The magnitude of the slopes also become larger, which seems to better fit
to the measured curves. The origin of these correction factors can be understood
by looking at the change of the absolute values of the phase terms due to the
approximations done. In the first approximated term, the nonlinear coefficient
and the peak power γP0 is multiplied by 2.3N in order to take account for self
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compression. From figure 3.5 it can be seen that the soliton order is something
around 4. This leads to a factor of 2.3 ·4 = 9.2 that γP0 is multiplied with. As a
result, by correcting the whole phase term by a factor of 1/10, the contribution
from the approximation is nearly compensated. This is the same for the other
phase term. Here, γP0 is multiplied by 4.5Nω/ω0. This approximation includes
besides of self compression also the shock term. By assuming a wavelength of
400 nm for the dispersive wave and 2000 nm for the input soliton, the shock term
has the value of 5. By again taking 4 as the soliton order, the factor becomes
4.5 · 4 · 5 = 90. Once again, the needed correction factor, which is 1/100 in this
case, compensates the contribution originating from the approximations. This
is no surprise, as the only phase term that gives good results without further
correction is γP0/2, which is already close to γP0. The necessity of these new
factors is although not yet clear, since these approximations were actually done
to improve the predictability of the RDW wavelength. But as it seems is the
influence on the phasematching condition too strong. One explanation can be
that the power of the compressed pulse is not as high as it is expected. This can
result from the power transmission of ∼ 45%, which was both measured as well
as calculated using the attenuation constant from equation 1.25. So even though
the pulse is compressed, the energy loss of the pulse is reducing the peak power.
In addition, the contribution from the negative dispersion can be smaller than
expected, which would lead to a longer soliton pulse in time, what would again
reduce the peak power used in the approximations. In the following subsection,
the gas is exchanged by Krypton and it will be examined if these corrections are
needed again.

3.1.2 Krypton

Like in the case for Argon, it should be first checked that effects arising from
ionisation or self focusing are not too strong. The peak power of P0 = 5 GW
stays the same, the critical powers for self focusing as well as for above barrier
suppression ionisation take the following new values:

P sf
cr,Krypton = π · (0.61)2 · (2000 nm)2

8 · (1.0011) · (26.3 × 10−24m2/(W · bar)) · 2 bar = 11 GW, (3.5)

and

P ion
cr,Krypton = 4 × 1013 · (14)4W/m2 · 0.48 · π · (100 µm)2 = 23 GW. (3.6)

Once again are the critical powers larger than the peak power at the input.
But since the nonlinear refractive index is larger for Krypton than for Argon,
the values of these powers are smaller and thus closer to the peak power of the
pulse. The difference in the absolute value of the nonlinear refractive indices
also shows in the pressure scan done for Krypton. The first spectra at low
pressures, where no dispersive wave is appearing, are shown in figure 3.8. Here,
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Figure 3.8: Spectra for broadening in Krypton from 0.3 bar to 0.6 bar.

the same behaviour can be observed as for Argon, namely that for increasing
pressure the broadening due to SPM gets stronger. As the nonlinear refractive
index for Krypton is roughly three times larger than for Argon, see table 1.1,
it is no surprise that the pressure is three times smaller than for Argon to get
comparable results. This comes from the fact that for the different phenomena
the product of nonlinear refractive index and pressure is a measure for the
strength of the process. The fringes close to 1000 nm are again interferences
between broadened light and residual light coming from the OPCPA. If the
pressure is increased, a dispersive wave is emerging. This is shown in figure
3.9. The broadened spectrum with its GVD curve, as well as the ZDW for

Figure 3.9: Spectra for broadening in Krypton from 0.7 bar to 0.9 bar.

the whole pressure range, is shown in figure 3.10. As expected is the input
pulse in the anomalopus dispersive region of the fibre, thus making it possible
to create a RDW. Also the ZDW is always smaller than the input spectrum for
every pressure within the scanning range. The position of the RDW is shifted to
higher wavelengths with increasing pressure in addition to an increase in spectral
amplitude, what can be seen in figure 3.9. This behaviour was already seen in
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Figure 3.10: On the left is the spectrum for broadening in Krypton at 1 bar
with the associated GVD curve. On the right, there is the ZDW for the entire
pressure range of this scan.

the case of Argon, hence why the characteristic length scales for Krypton, shown
in figure 3.11, are comparable with the length scales in figure 3.5 for Argon. The

Figure 3.11: The left figure shows the dispersion, fission and nonlinear length
for a Krypton filled HCF. On the right hand side the related soliton order is
plotted.

length scales show the same behaviour. The nonlinear length is smaller than
the dispersion length, leading to a soliton order larger than one. This is a
prerequisite for the RDW generation, as the soliton broadens spectrally till the
UV region where a resonant transfer of energy can happen. The soliton order
also increases as the pressure does, reaching even higher values than in the
case for Argon. This results from the nonlinear length reaching values that are
even lower. But the soliton order is still smaller than 15, such that modulation
instabilities should not occur [20].

After a sufficient propagation distance, the soliton will undergo fission and
break up. For Argon, fission happened around 3 bar inside the fibre. This would
result in fission inside the fibre at around 1 bar for Krypton. This is indeed true,
as it can be seen in figure 3.12.
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Figure 3.12: Spectra for broadening in Krypton from 1.1 bar to 2 bar. The
inset shows the spectrum in the region from 500 nm to 1500 nm to highlight the
reduced overall broadening at higher pressures.

Here, the amplitude of the RDW does not increase anymore. This is the case
if the fission happens before the end of the fibre, as after this event the energy
transfer stops and thus the spectral amplitude will not increase any longer.
By further increasing the pressure, the fission point just moves away from the
end of the fibre towards the input. Like it happened in the case for Argon,
the overall broadening also starts to decrease once the fission happened. This
can be seen in the inset of figure 3.12. But unlike before, the RDW shows an
interesting shape after the fission happened. At lower pressures, where no fission
happened yet, the the RDW is spectrally a clear pulses with one maximum and
strictly monotonous slopes. But after the fission, the dispersive waves gets
spectral wings. These wings become stronger with propagation distance, as for
increasing pressure the distance between fibre output and point of fission gets
larger. The dispersive waves, that are more broadband with these side wings,
are shown in figure 3.13.

Figure 3.13: The spectral wings of the RDW for different Krypton pressures.
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Since the dispersive wave can be considered to be a pulse propagating on its
own, it can experience both linear and nonlinear interaction with the gas filled
HCF. Whereas the linear part causes the pulse to disperse, the nonlinear part can
also influence the pulse in the same way as the input pulse. Since the spectrum
is more broadband and has spectral wings, it shall be roughly examined if a
nonlinear process like SPM can be the reason for this spectral shape. The
RDW could experience this in two ways. Firstly, this can happen by cross
phase modulation (XPM). Here, the high intensity of the NIR pulse changes the
refractive index by the means of the Kerr effect. Whereas this is responsible for
the main pulse to get broadened, also the RDW sees this intensity dependent
refractive index and gets affected [21]. Secondly, the intensity of the RDW itself
could induce this effect on its own. This is the case if the RDW is propagating
by itself after the fission happened and is lagging behind the main pulse as
the linear refractive index is higher for shorter wavelengths. This means that
the high intensity of the RDW alone could cause SPM to broaden its spectrum
[22], [23]. To roughly check if this is a possibility, the following approximations
are done. The central wavelength of the RDW is 400 nm with the bandwidth
of 20 nm. The conversion efficiency from the soliton input pulse energy to the
RDW is 20 %. For that, the numerically calculated area of the dispersive wave
is set in ratio the the area of the full spectrum with also accounting for the
transmission efficiency of 45 %. The value of 20 % is herby reasonable since even
higher values are possible [22], [23]. The RDW has then the following duration:

τRDW = 2 · ln(2) · (400 nm)2

π · c · 20 nm = 11.7 fs. (3.7)

The dispersion that the pulse will experience, which would result in a longer
time width of the pulse, is neglected for the sake of estimation. The resulting
peak power would be

P RDW
0 = 0.940.2 · 80 µJ

11.7 fs = 1.3 GW. (3.8)

The nonlinear coefficient is going to be

γRDW = 36.7 × 10−24m2/(W · bar)) · 2 bar · 2
400 nm · 0.48 · (100 µm)2 = 76.5 × 10−9 m−1W−1, (3.9)

with the nonlinear refractive index being corrected for the RDW wavelength
that is smaller than the 2 µm used before. This results in the nonlinear length
to be

LRDW
NL = 1

γRDW · P RDW
0

= 1 cm. (3.10)

This outcome means that the RDW gets spectrally broadened if the propagation
distance is in the order of 1 cm. For that to happen, the fission has to occur at
least one centimetre before the fibre ends. The calculated fission length for the
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Krypton filled fibre goes from 18 cm at 1 bar to 13 cm at 2 bar. Even though the
fission length is always smaller than the real length and thus not entirely correct,
it is good enough to say that the RDW at 2 bar had a long enough travel distance
inside the fibre to get spectrally broadened if the necessary travel distance is
in the order of one centimeter. In any case, this is just an approximation,
since at first the pulse would experience XPM, which then switches to be SPM
as the pulse lags behind. Not only the Kerr contribution could explain the
shape of the spectrum. Other effects arising form coupling to higher order fibre
modes or ionization also have an influence on the spectrum in the UV. This
will be mentioned in the next subsection, as the energy scan revealed a similar
behaviour.

Now, the wavelength of the dispersive wave is analysed by comparing the
measured values with the ones calculated by the phasematching condition 1.47.
The general behaviour of the wavelength is the same as it was seen for Argon,
but in the case for Krypton even lower wavelengths can be reached. The two
phasematching terms that were corrected in order to fit the curves in the case of
Argon are again corrected in the same way to see if the prediction is improved
one more time. Figure 3.14 shows the measured and calculated wavelengths
of the dispersive wave. Like in the case for Argon, only one not corrected

Figure 3.14: On the right, the RDW wavelength is plotted when the terms 1.49
and 1.51 are used in the phasematching condition for a Krypton filled fibre. On
the left, the measured RDW position is shown from both methods A and B, as
well as the result from solving the phase matching condition. For that, term
1.48, as well as the by correction factors multiplied terms 1.49 and 1.51, were
used.

phasematching term gives results close to the measured values. The other two
terms need an additional correction factor to get close to the measured data.
Again, the same correction factors as they were used for Argon improve the
results. But in contrast to the corrected curves shown in figure 3.7, the corrected
curves here have a stronger curvature in comparison with the measurements. So,
if the pressure range would be extended, it would probably result in an increasing
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error of the predicted wavelength. Since the calculated results are worse than
in the case for Argon, a possible explanation could be that ionization affects
the phasematching condition [8], [24]. This would especially happen in the
case of Krypton, as the ionization threshold is lower than for Argon. Although
the input power is too low for significant above barrier suppression ionization,
tunnel ionization can occur for even lower powers. But even if the power is not
sufficient for barrier suppression ionization at the beginning, due to soliton self
compression the critical power can be reached. In any case, a plasma origination
from ionization would lead to an additional term in the phasematching condition
[25]. This term could potentially improve the calculated results. But this could
also result in a RDW in the IR region. However, this can not be verified as the
covered wavelength region only goes up to 2500 nm with the used spectrometers
and the new wave would be further in the IR.

A comparison of the RDW wavelengths of both gases show that the lowest
values can be achieved with Krypton. This has an influence on the bandwidth
of the broadened spectrum, as it is shown in figure 3.15. Here, the spectrum

Figure 3.15: Comparison of broadening between the two gases. The pressures
where chosen such that the RDW is weak, thus producing a flat overall spectrum.

obtained with Argon at 1.8 bar is plotted with the spectrum of Krypton at
0.7 bar. The pressures were chosen with the aim of having a flat spectrum.
Therefore, the RDW is weak as it just started to build up at the fibre exit. This
is of importance for the next generation synthesizer, as the goal is to produce a
flat supercontinuum. The figure shows that a more broadband spectrum can be
achieved with Krypton, which is a result of the resonant transfer of energy to the
RDW wavelength that is shorter than for Argon. The broadening in the spectral
region between the RDW and the input pulse is for both gases comparable, only
for Argon it is a bit stronger.
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3.2 Energy Scan

Besides a pressure scan, an additional input pulse energy scan was performed.
This happened by changing the pump power of the OPCPA, which led to a
varying power of the beam sent into the fibre. Like in the previous section, the
energy of the pulse was varied for Argon and Krypton in different ranges, where
the maximum energy was smaller in the case for Krypton as the nonlinearties are
stronger. The pressure was kept constant for both gases at 1 bar. In common
was the minimum energy at 80 µJ, which is the same pulse energy used in
the pressure scan. The maximum value was 247 µJ for Argon and 147 µJ for
Krypton.

3.2.1 Argon

It can be seen in figure 3.2 that for 80 µJ the pressure has to be increased above
1.7 bar to see a RDW emerging, below that pressure there is only broadening due
to SPM and self steepening happening. This is the same case here, where the
energy has to be increased up to 147 µJ in order to see a RDW. This is shown in
figure 3.16. For lower pulse energies, there was broadening comparable to what
was shown in the pressure scan. The peak power also stays below the critical
powers calculated in section 3.1.1, even though it can be three times larger as
the pulse energy is roughly increased by that factor during this scan. From the

Figure 3.16: Spectra for broadening in Argon at 147 µJ and 180 µJ.

first two spectra, it can be seen that with increasing pulse energy the spectral
amplitude of the dispersive wave grows. Again, this is a result of the fission
length decreasing with pulse energy. This is illustrated in figure 3.17. The
dispersion length is constant as it only depends on the absolute value of β2 and
the pulse width in time. The nonlinear length decreases, and so does the fission
length. Like it could be seen in the pressure scan, a calculated fission length of
about 20 cm seems to equal the length of the fibre. The soliton order is increasing
and has comparable values to what was calculated for the pressure scan. An
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Figure 3.17: The left figure shows the dispersion, fission and nonlinear length
for an Argon filled HCF. On the right hand side the related soliton order is
plotted.

interesting observation of the measured spectra is that the wavelength of the
RDW seems to increase a bit, which is in contrast to what the phasematching
condition would predict. Whereas for increasing pressure the wavelength should
become longer, an increase in pulse energy should lead to a shorter wavelength.
So, the phasematching condition, given the different terms that account for the
phase of the soliton, cannot predict the wavelength of the RDW for increasing
pulse energy in a reliable way.

During the pressure scan for Krypton it could be seen that the dispersive
wave gets more broadband and spectrally modulated with increasing pressure
as soon as the fission happened. Something like this happens again if the pulse
energy is increased, but in this case the modulations are even more pronounced.
This is shown in figure 3.18. Here, the RDW shows spectral modulations that

Figure 3.18: Spectra for broadening in Argon at 213 µJ and 247 µJ. The inset
zooms to the spectral region of the dispersive waves.

were not seen before in this extent. Also, the total spectral bandwidth is larger
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than in previous spectra, it is for example more broadband than the strong RDW
in figure 3.6. Furthermore, the maximum spectral amplitude is lower than what
was measured during the pressure scan. This is in contrast to the higher pulse
energy of the input pulse, since one could assume that the dispersive wave also
contains more energy, so leading to a larger spectral amplitude. A possible
explanation is that XPM and SPM is reshaping the spectrum of the RDW. It
was shown in the last section, that for an input pulse energy of 80 µJ and higher
pressure, the short nonlinear length would allow SPM to affect the RDW after
the fission point. The strength of this nonlinear process is determined by the
product of pressure and pulse energy. During the pressure scan, the strongest
RDW appeared at 3 bar and 80 µJ pulse energy. In this energy scan, the highest
pulse energy is roughly three times larger than in the pressure scan. At the
same time, the pressure is three times smaller. So the not changing product of
energy and pressure can not alone explain the heavy modulation in this energy
scan. A possible explanation for that could be that the conversion efficiency
from the NIR to the RDW is not constant, it can increase with increasing input
pulse energy [22], [23]. This would then lead to the situation that the power
contained in this RDW is exponentially higher than during the pressure scan.
Since the strength of SPM is then dependent on pressure, pulse energy and
conversion efficiency, its effect can be stronger, what could explain why the
spectrum of the RDW is now altered much more than before. Another reason
could be that the output window is introducing SPM to the RDW. This would
explain why it is happening during the energy scan and not the pressure scan,
as the strength of SPM in the window does only depend on the pulse energy and
no the pressure. But this should then also affect the NIR pulse, as even with
high conversion efficiency most of the energy is still contained in this spectral
part. Another explanation could be the that the fission length is so small that
after the first fission occurred, the main pulse gets compressed again and thus
creating an additional RDW at a wavelength close to it [26], [8]. Furthermore,
higher order modes could now contain more energy, which would also result in
additional spectral components around the RDW [27]. Moreover, plasma effects
can not be excluded completely [24], [28], [29] as the impact of free electrons
on the refractive index can also cause the modulations on the output spectrum.
This would require ionization to happen, which is favoured by the higher peak
power in this case and the fact that tunnel ionization happens at lower powers
than barrier suppression ionization. Also the self compressing pulse can lead to
more ionization due to a higher peak power.

3.2.2 Krypton

The maximum peak power of the input pulse is P0 = 9 GW for the maximum
pulse energy of 147 µJ. This is lower than the critical power for self focusing of
P sf

cre,Krypton = 22 GW and barrier suppression ionization P ion
cr,Krypton = 23 GW.

The first captured spectrum at 80 µJ has already a RDW, which is not surprising
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as this combination of pressure and pulse energy was already part of the pressure
scan in the last section. This spectrum is shown in figure 3.19. Like before, the

Figure 3.19: Spectrum for broadening in Krypton at 80 µJ.

NIR part is broadened and the RDW amplitude is strong. Since it was found
out that the fission happens at the end of the fibre, at a pressure around 1 bar,
it is no surprise that the calculated fission length is around 18 cm, as it can be
seen in figure 3.20. With increasing pulse energy the nonlinear length decreases

Figure 3.20: The left figure shows the dispersion, fission and nonlinear length
for a Krypton filled HCF. On the right hand side the related soliton order is
plotted.

and so the soliton order increases. The dispersion length stays again constant,
as the pulse energy does not change. The characteristic length scales show the
same behaviour as before, which is not surprising as the product of nonlinear
refractive index, pressure and pulse energy is comparable to previous scans. If
the pulse energy is further increased, the spectra as shown in figure 3.21 are
generated. Once again, the dispersive wave gets spectrally broadened like in
the case for the energy scan done with Argon. The spectrum also shows the
same modulations, which suggests that the previously mentioned explanation of
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Figure 3.21: Spectra for broadening in Krypton at 113 µJ and 147 µJ. The inset
zooms to the spectral region of the dispersive waves.

XPM and SPM could be the cause of this. But still, other effects arising from
higher order mode coupling and plasma interaction can occur. In the following
chapter, simulations are performed to verify if these supercontinua, including
the modulated RDW at higher input pulse energy, can be reproduced.
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Numerical Simulations

In this chapter some results obtained by numerical simulations are discussed.
The aim is to find out if the generation of a dispersive wave is possible, and if,
how well the wavelength and intensity match the measurements. In addition,
the general broadening behaviour is evaluated with respect to the point of fission
and the subsequently diminishing VIS spectrum.

The used program is PyNLO, which is a free package for Python [30]. It
simulates the propagation of a laser beam by computing the pulse both in time
and frequency domain at every small travel distance inside the fibre. At each
step the physical processes described in the GNLSE, shown in section 1.2, are
applied to the pulse. The method used is the the adaptive-step-size fourth-
order Runge-Kutta in the Interaction Picture [31]. The coefficients α and γ
that are contained in this equation were calculated with the equations 1.25
and 1.26. Although these parameters are wavelength dependent, the simulation
treats them as constants computed at the central wavelength of 2000 nm. The
listed beta coefficients were not calculated. Instead, the program was modified
to accept the dispersion curve that is the result of evaluating equation 1.29.
The fibre length was set to 30 cm, the fibre core diameter to 200 µm and the
temperature to 297 K to match the experimental conditions.

The program accepts a custom spectrum with spectral phase as an input
for the simulation. Two different input spectra were created. They are shown
in figure 4.1. The first is a fit of four Gaussian functions. For this, the sum of
four single Gaussian bell curves was fitted to the measured spectrum that was
shown in figure 3.1. With this approximation, the simulations ran fine with the
pulse energy of 80 µJ. For higher pulse energies, as it was used in the energy
scan, another input spectrum was needed in order to have a stable simulation.
A Supergaussian of sixth order was working fine, as it is very smooth with
comparable bandwidth to the original spectrum. Both spectra have in common
that they do not include the residual OPCPA light around 1000 nm, as it does
not take part in super continuum generation. The spectral phase was set to
zero for both spectra, meaning that an ideal compressed pulse was used for the
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Figure 4.1: Fitted input spectra used for the simulations. The OPCPA spectrum
is the same as in figure 3.1.

simulations. In order to achieve comparable simulation results between these
two input spectra, the pulse energy was reduced for the Supergaussian fit in
order to have the same temporal peak intensity as the Gauss4 fit. This was
realized by multiplying the real pulse energy by a factor of 0.58 in the program.
The first simulations were aimed at determining the wavelength of the dispersive
wave, if it is generated. The results are shown in figure 4.2. Here, the measured

Figure 4.2: Simulated RDW wavelength compared to the measured values for
both gases. The simulations were done with the two input spectra shown in
figure 4.1.

wavelengths, which have already been shown in chapter 3, are compared to the
results of the simulations. Both input spectra were used, where 80 µJ was set
in the program for the Gauss4 fit and a reduced energy for the Supergauss fit
as mentioned. One can clearly see that the simulated wavelengths are close to
the values obtained with method A. Especially by considering that the distance
to method A is smaller than the distance between both methods A and B,
it shows that the simulations do a good job in prediction the wavelength of
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the dispersive wave. Also the curvature agrees well with the measured curves,
indicating that for another pressure range the simulations will also give satisfying
results. Whereas for Krypton every simulated spectrum has a RDW, for Argon
a dispersive wave only starts to appear above 2.1 bar. The reason could be that
in the simulations there was no energy transfer yet or it was so minuscule that
it did not lead to a pronounced dispersive wave. As it will be shown in the
following, the simulated RDW is in general relatively weak.

Now, the output spectra are compared to the real spectra from the measure-
ments. In the last chapter one could see, that the spectra from Krypton and
Argon were comparable, as the pressure range was adapted so that the nonlin-
ear effects are roughly the same. This is the same for the simulations, where
the different gases produced comparable output spectra for their own pressure
range. Following from this it is not necessary to shown the spectra for both Ar-
gon and Krypton in order to determine the accuracy of the program, especially
as it was already proven that the simulated wavelengths of the dispersive waves
match the measured values. So, the simulated and measured output spectra
for Krypton at 1 bar, 1.5 bar and 2 bar are shown in figure 4.3. For the input
spectrum, the fit Gausss4 was selected, as this spectrum has more in common
with the OPCPA spectrum than the fit Supergauss. The first thing to notice
is that the RDW is much weaker than the NIR part in the simulations than
in the measurements. A possible explanation can be that the program takes
the attenuation α as a constant. This is of course not true, as it can be seen
from equation 1.25 that it is wavelength dependent and increases quadratically
with it. This means that a dispersive wave around 400 nm should experience a
attenuation constant 25 times lower than for the input pulse at 2 µm. But still,
this would then require some propagation inside the fibre to show an effect. If
the fission happens close to the fibre end, which was found out to the case for
1 bar, the different attenuation values should not show a strong influence on the
relative spectral intensity of the dispersive wave. So, there must be also other
effects explaining why the RDW is so strong in the measurements. No sur-
prise are the missing interference fringes around 1000 nm, as this residual light
was not included in the input spectra. The simulated NIR part shows clearly
modulations due to SPM and self steepening, which agrees to some extend to
the measured spectrum. Although the used NIR spectrometer has its limit at
2500 nm, the spectrum was extended to 3600 nm to see what the simulations
show for this region.

Since the program solves the GNLSE for every travelled step inside the fibre,
it computes the spectrum and the pulse in time for every propagated distance.
The resulting spectral evolution inside the fibre of the three just shown output
spectra is illustrated in figure 4.4.

Here, the behaviour of the supercontinuum generation from SPM and self
steepening with subsequent dispersive wave generation can be identified for every
pressure. At first, the input pulse, which is a soliton as it lies in the anomalous
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Figure 4.3: The simulated output spectra for Krypton at different pressures are
compared to the measurements. Gauss4 fit is used as the input spectrum.

dispersion region of the fibre, broadens up to the UV followed by a resonant
transfer of energy to the dispersive wave. When the fission length is reached,
the soliton will break up, which results in the RDW to travel on its own and
a slow disappear of the VIS light. The different behaviour at different pres-
sures was already indicated during the discussion of the measured data. Here,
it can be seen again that the fission length decreases with increasing pressure.
This time, however, the results are more accurate than the characteristic length
scales that were shown in chapter 3. From the evaluated measured spectra it
could be deduced that the fission length equals the fibre length at about 1 bar,
as for higher pressures the VIS light started to vanish and also the spectral
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Figure 4.4: Simulated spectral evolution of broadening in Krypton at three
different pressures. Gauss4 fit is used as the input spectrum.

intensity did not change much. The simulations agree with that, as for 1 bar
fission already happened before the end of the fibre. This is because the broad-
ened light between input pulse and RDW starts to fade away. With a further
increase in pressure, the fission length becomes shorter and shorter, leading to a
weaker overall broadening at the output. Furthermore is the value of the RDW
wavelength increasing. What could not be seen in the measurements is that for
higher pressures the broadening in the VIS region seems to be stronger before
the fission happens, as the fibre was longer than that fission length.

Next, the simulated output pulse in the time domain is illustrated in figure
4.5. Here, the envelope of the pulse as it leaves the fibre is shown for the same
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Figure 4.5: Simulated pulse envelope at the output for broadening in Krypton
at three different pressures. Gauss4 fit is used as the input spectrum.

three different pressures. It is clearly visible that the output pulse is shorter
than at the input, which is caused by the anomalous dispersion of the fibre.
Additionally the effect of self steepening can be identified by the trailing edge.
It also shows fast modulations, that fall further behind as the pressure increases.
These modulations are coming from the high frequency components that were
necessary for the very steep trailing edge. But as the pulse broke up, they
started to lag behind since the refractive index is higher for them than for the
rest of the pulse. And with increasing pressure, the temporal distance between
the NIR pulse and the short wavelengths increases because they are generated
earlier inside the fibre.

Now, the RDW should be investigated at higher input pulse energies. For
this, the computed output spectra for just the dispersive waves alongside the
RDW obtained from the measurements are shown in figure 4.6. In chapter 3 it
was shown that the dispersive wave gets broader and spectrally modulated as
the input pulse energy was increased. For the simulations, the input spectrum
Supergauss fit was used. The other spectrum, Gauss4 fit, caused problems
during the simulations and did not give valuable results. It can be seen that
the spectrum shows some modulations at the highest pulse energy, but still not
comparable to the strength of the measured one. In addition is the spectral
bandwidth not as large. In chapter 3 is was suggested that XPM or SPM can
be the cause. If this is really the case, the simulations do not show this for
two possible reasons. Firstly, the intensity of the RDW compared to the NIR
is weak, so it might not be sufficient high for SPM on its own. Secondly, the
nonlinear coefficient γ is treated as a constant in the simulations. This is not
true since it does increase with shorter wavelengths. As a result, the simulated
nonlinear strength is weaker than it is in reality. But, if it is caused by the output
window, it can of course not be explained by the simulations. Additionally, the
mentioned contribution from higher order modes cannot be simulated as well as
plasma effects, as they are not included in the numerically solved GNLSE.
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Figure 4.6: Simulated RDW spectrum for input pulse energies of 113 µJ and
147 µJ for broadening in Krypton alongside the measurement. Supergauss fit is
used as the input spectrum.

An additional simulation was performed to see if SPM can generate such a
spectrum. Here, the simple assumption was made that the dispersive wave is
just a pulse with a specific energy and spectral bandwidth that is propagating
inside a fibre. The result is shown in figure 4.7. In this case, just a UV pulse

Figure 4.7: Simulated spectrum if just a UV pulse is propagating inside a Kryp-
ton filled fibre at 1 bar. The initial UV spectrum is comparable with the disper-
sive wave illustrated in figure 3.19. The conversion efficiency is assumed to be
20 %. The resulting spectrum after a specific propagation distance is compared
to the measured spectrum of the RDW with the input pulse energy of 147 µJ.

was used as the input for a Krypton filled fibre at 1 bar. The spectrum was a
Gaussian centred at 340 nm with a spectral width of 20 nm. This is comparable
to the spectrum of the RDW shown in figure 3.19. The pulse energy was set
to 0.2 · 147 µJ = 29.4 µJ. The conversion efficiency of 20 % was determined by
numerically integrating the measured spectra to get an esimation of how much
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energy is contained in the RDW and applying the total transmission efficiency
of 45 %. This time, the nonlinear coefficient and the attenuation constant are
calculated at the center wavelength of the UV pulse and not the NIR soliton.
Simulations have shown that the fission happens somewhere a the middle of the
fibre, which results in a propagation length for the RDW to be 15 cm at maxi-
mum. The simulated spectra show clearly broadening of the pulse, now reaching
more than 100 nm with respect to the 20 nm at the beginning. This time, the
bandwidth of the simulated pulse is also closer to the measured spectrum in
contrast to what was illustrated in figure 4.6. Modulations are also present,
even though not in the extent of the measured spectrum. Below 50 mm there is
a dip in the centre of the spectrum. After some more propagation a third peak
starts to appear, which is visible at 65 mm. For an even longer travel distance
the peaks starts to become more equal in hight, which is indicated at a distance
of 80 mm. Therefore, SPM can indeed broaden the RDW and cause spectral
modulations given the contained pulse energy and perfect compression. But
still, the simulated spectra do not equal the measured ones. This means that a
further interaction with the main NIR pulse causes the shape of the RDW. This
includes the already mentioned coupling to higher order modes or the generation
of several dispersive waves that interfere with each other.
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Conclusion and Outlook

In chapter 3, where the experimental measurements were analysed, it was shown
that there are three states of broadening. The first is described by a spectral
range that reaches the UV, but without the presence of a dispersive wave. The
second state is described by the build up of a dispersive wave with an additional
increase of general broadening, so in the NIR and VIS region. The propagating
pulse is still the higher order soliton in this state. It did not yet undergo fission,
although experiencing self compression due to the anomalous dispersion. The
third and last state is reached after soliton fission. There, the original soliton
breaks up and the residual ones can not support the broad spectrum anymore,
which results in less general broadening as the VIS disappears. The RDW is
strongest in this state, as there was a continuous energy transfer until the fission.

During the pressure scan it was observed that both gases can produce a
supercontinuum. The main difference is that for a comparable spectrum the
pressure is lower for Krypton. However, for a state where a transfer of energy
to the dispersive wave has happened but did not yet lead to a pronounced peak,
Krypton seems to generate a more broadband spectrum. This is the case as due
to the phasmatching condition the RDW is positioned at shorter wavelengths for
Krypton. For both gases, the further increase in pressure led to a very strong
RDW and a longer wavelength of which. An additional energy scan showed
another behaviour. The wavelength did not change much and the maximum
spectral intensity did not increase with higher input pulse energy. Instead, the
RDW started to show a strong spectral modulation and broadening.

In chapter 4, the simulated spectra were compared to the measurements.
It was shown that the wavelength of the dispersive wave agrees well with the
measured value when the pressure was changed. Also the fission length seems
to agree with the experiment. Only the relative spectral intensity compared
to the NIR part is too low with respect to the measurements. The measured
spectral broadening of the RDW at higher pulse energies could also not really
be achieved. But as a tool to figure out the wavelength of the generated RDW,
as well as to determine the fission length, it seems to work well.
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With this in mind, the first conclusive outlook can be made. The aim of this
thesis was to analyse the generated spectrum, especially the origin of the dis-
persive wave. One goal was to estimate the supercontinuum the next generation
synthesizer will have. The source to achieve this is a 2 µm beam with a pulse
energy of 80 µJ. From the measurement series it could already be seen that a
super continuum without a pronounced dispersive wave can be generated using
a 30 cm long fibre at 0.7 bar for Krypton or 1.8 bar for Argon. A requirement
for this is that the fission would happen after the fibre ends, since only a very
limited transfer of energy is wanted. As a result, the broadband spectrum is
flat due to the missing RDW. To suppress the generation of a dispersive wave,
the fibre has to end shortly after the spectrum has broadened into the UV due
to SPM and self steepening. This has a positive effect on pulse compression.
Every wavelength below the zero dispersion wavelength experiences normal dis-
persion, which especially affects the shorter wavelengths of the spectrum. If
the fibre ends shortly after the generation of those, the total dispersion they
accumulate is limited. This is in contrast to the case where a RDW is gener-
ated, as here the short wavelengths propagate a longer distance inside the fibre
and thus getting more dispersed. The shorter propagation inside the fibre has
the advantage that the amount of chirped mirrors for post compression inside
the synthesizer is reduced. To further improve the intensity of the broadband
spectrum, the pressure can be increased by simultaneously decreasing the fibre
length. The simulations have shown that the spectral region between the dis-
persive wave and the input pulse, at a propagation distance where the RDW is
still weak, gets stronger with higher pressures. To suppress the generation of
the dispersive wave, the fibre has to be shortened accordingly to that specific
propagation distance. This would also results in an improved transmission of
the power, as the total attenuation of the beam decreases as the fibre length
does. But still, it should be noted that the spectral intensity might increase with
higher pressures, the total bandwidth however might decrease as the wavelength
of the RDW gets longer. Further simulations can help to determine the optimal
pressure to guarantee a broadband and intense supercontinuum.

The second conclusive outlook is about the generated RDW. This can be
an intense laser source for UV light. Although the simulations could not show
it, in the measured spectra it is clearly visible that the generated dispersive
waves are intense. A further measurement series could focus on determining the
conversion efficiency to see how much energy is confined in this UV region. But
since it could already be seen that the peak has quite some spectral intensity, the
possibility to change the wavelength of that dispersive wave makes it an intense
and tunable UV source. And if the conversion efficiency is even high enough to
support the assumption that the RDW has enough energy that broadening due
to SPM is affecting it, another measurement series could focus on broadband
UV generation.



Appendix A

Data Archiving

The experimental raw data, the matlab evaluation files, the presented figures,
the python program and the modified Python package PyNLO are archived on
the server of the Laboratory for Attosecond Physics at the Max Planck Institute
of Quantum Optics:

//afs/ipp-garching.mpg.de/mpq/lap/publication_archive

The ReadMe file contains a detailed description of the organization of the raw
data and how to use the evaluation files and the Python program.
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