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Optimization of accelerator performance parameters is limited by numerous trade-offs, and finding the
appropriate balance between optimization goals for an unknown system is challenging to achieve. Here, we
show that multiobjective Bayesian optimization can map the solution space of a laser wakefield accelerator
(LWFA) in a very sample-efficient way. We observe that there exists a wide range of Pareto-optimal
solutions that trade beam energy versus charge at similar laser-to-beam efficiency. Moreover, many
applications such as light sources require particle beams at certain target energies. We demonstrate accurate
energy tuning of the LWFA from 150 to 400 MeV via the simultaneous adjustment of eight parameters. To
further advance this use case, we propose an inverse model that allows a user to specify desired beam
parameters. Trained on the forward Gaussian process model, the inverse model generates input parameter
value ranges within which the desired setting is likely to be reached. The method reveals different strategies
for accelerator tuning and is expected to drastically facilitate the operation of LWFAs in the near future.
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Laser wakefield acceleration (LWFA) [1,2] and related
radiation sources [3] are an emerging technology with
potentially broad applications in science, industry, and
medicine [4]. Over the past decade, there has been
significant progress with regard to both quality and stability
of the accelerated electron beams [5] and recently, first
experiments have demonstrated that beam parameters are
sufficient to drive free electron lasers [6,7]. Much of this
progress can be attributed to improved performance of laser
systems and better targets, in particular the use of con-
trolled injection methods such as shock-front injection or
ionization-induced injection [8–11]. Nonetheless, the role
of expert human operators in reaching optimal performance
cannot be overstated. Their manual optimization typically
relies on sequential line scans, using a combination of
intuition and experience to determine optimal parameters
for, e.g., target position and laser pulse duration. However,
the continuously increasing complexity of laser-plasma
experiments has made reaching optimal performance in a
reproducible manner increasingly difficult.
Machine learning techniques offer powerful tools to

address this challenge. A particularly popular method for

the optimization of laser-plasma accelerators is Bayesian
optimization (BO) [12–14]. BO is a global optimization
method based on searching optima in a probabilistic
surrogate model that is updated iteratively as the experi-
ment progresses [15]. It is extremely sample efficient,
meaning it converges to the optimum with relatively few
measurements. This makes it very suitable for the opti-
mization of laser-plasma accelerators, where measurements
are often acquired at a relatively low acquisition rate. The
underlying probabilistic model commonly referred to as a
surrogate model is usually chosen as a Gaussian process
(GP) [16,17]. This is a nonparametric probabilistic model
that assumes prior knowledge about possible relations
between parameters and objectives. Within each iteration
of the BO, a GP model is fitted to the current observations.
This model is used to estimate a good position for the next
measurement and the resulting observation is then
appended to the data. The objective of optimizing a
laser-plasma accelerator typically consists of maximizing
one or more metrics that are combined into a single scalar
value using empirically determined weights [13,14]. In a
previous publication [18] we studied different objective
functions such as combinations of mean electron energy,
energy bandwidth and charge. There we found that a priori
definition of objective weights does often not lead to the
desired outcome. Instead, we showed that Pareto optimi-
zation via expected improvement of the hypervolume
occupied by all objectives in the output space can effi-
ciently explore the trade-offs between objectives and be
used to choose adequate Pareto-optimal solutions a poste-
riori. The latter are all the best possible combinations of the
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objectives that are achievable, which form the so-called
Pareto front [19]. This technique has shown promise in
optimizing the parameters of an accelerator but has been
restricted to using only surrogate models based on simu-
lations [20].
In this Letter, we present the first experimental results on

such a Pareto optimization of a laser wakefield accelerator.
We also present a novel technique to tune the input
parameters to result in electron beams desired by the user.
Experiments were performed with the ATLAS laser system
at the Centre for Advanced Laser Applications in Garching,
Germany and the experimental setup is shown in Fig. 1.
During the experiment the laser delivered 30 fs pulses at a
central wavelength of 800 nm with an estimated energy of
ð4� 0.8Þ J energy within the 46 μm waist. The resulting
peak intensity is ð7.5� 0.4Þ 1018 W=cm2, corresponding
to a normalized vector potential of a0 ¼ 1.8.
The target consisted of a 7-mm-long supersonic gas jet

using either pure hydrogen or a mixture containing a
nitrogen dopant. The jet is mounted on a hexapod for
three-dimensional positioning. Moving the gas jet along the
laser focus (z axis) changes the peak intensity at the target
entrance, while movement in the vertical (x) direction
simultaneously changes the density and cross-section of
the gas jet that the laser interacts with. A silicon wafer is
mounted on an ðx; zÞ motorized stage to locally perturb the

supersonic gas flow, leading to the formation of a shock
front. At this shock front, the gas density rapidly drops,
resulting in an expansion of the plasma wakefield that
facilitates the injection of electrons [9]. The wafer can be
moved along the gas jet to control the point of injection.
This can be used to tune the energy of the electron beams
since the acceleration length can be reduced or increased by
moving the blade in or out of the gas jet, respectively. The
blade is also motorized vertically over the gas jet to result in
different shapes of the shock [21]. The gas density can be
changed by changing the backing pressure of the nozzle
and three different orders of dispersion of the laser pulse are
controlled through an acousto-optic programmable disper-
sive filter. Tango controls is used to change the longitudinal
gas jet position, gas jet height, blade position, blade height,
gas pressure, and the 3 orders of dispersion of the laser in an
automated fashion [22,23]. A dipole magnet spectrometer
is used to disperse the electron beam onto several charge-
calibrated scintillating screens [24], which are imaged and
stitched together to yield the complete electron energy
spectrum. More details on the experimental setup can be
found in Supplemental Material [25].
From the energy spectrum we determine the total beam

charge Q, median energy Ē, and energy spread σE. These
parameters uniquely define a normally distributed energy
spectrum and in their three-dimensional objective space Y,
their trade-offs span the Pareto “surface” P. However, the
spectral distribution of a laser-accelerated electron beam
may considerably differ from a normal distribution and
because of this, metrics such as the mean energy may not be
characteristic of peaks in the spectral distribution. As an
example, when a gas mixture is used, the resulting shock-
assisted ionization injection [30] produces multiple elec-
tron bunches with low-energy tails in the spectrum as well
as a high-energy peak. This skews the metrics defined over
the whole spectrum and thus requires a method to separate
the individual bunches within a single spectrum. To this
end, we used a Gaussian mixture model (GMM) [12] which
is discussed in detail in Supplemental Material [25,31].
This postprocessing step allows us to isolate specific bunch
contributions in real time, avoiding contamination and
enabling precise statistical analysis of each target electron
beam bunch (an example for GMM segmented spectra is
shown in Fig. 2).
In our initial optimization effort, we focused on enhanc-

ing the bunch’s beam charge and average energy, while
aiming to reduce the energy spread. This task was under-
taken through multiobjective optimization (MOO), utiliz-
ing a subset of four input parameters (zjet, xjet, zblade, xblade)
from a total of eight available. Detailed discussions of these
preliminary results are provided in Supplemental Material
[25], showcasing the effectiveness of our technique.
Following the successful demonstration of the algorithm’s
convergence and effectiveness, we expanded our approach
to include the full set of eight dimensions. In this

(a)

(b)

FIG. 1. (a) The Experimental setup for a laser wakefield
accelerator with shock-front injection. The controllable input
laser parameters for the optimization are the second, third, and
fourth orders of dispersion ϕ of the laser. Regarding the plasma
parameters, the jet and blade were moved in ðx; zÞ position and
the backing pressure p of the nozzle was also changed. This
makes a total of eight controllable input parameters that were
given to the Bayesian optimization algorithm. (b) During multi-
objective optimization a Gaussian process (GP) model is trained
based on the measurements to predict outputs y given an input x.
The inverse model instead takes a desired output y and predicts a
distribution of inputs x that are likely to produce these results.
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comprehensive 8D optimization, we maintained the origi-
nal objectives but incorporated additional variables, namely
the gas pressure and the three orders of laser dispersion, to
further refine our results. Moreover, in this optimization we
allow the optimizer control over the number of shots rather
than taking a fixed number of shots at each position. This is
enabled by using a multiobjective multifidelity optimiza-
tion technique called Trust-MOMF [32] (for details, see
Supplemental Material [25]). This allows the algorithm to
dynamically change the number of shots it needs to take in
different regions of the input parameter space. The mini-
mum and the maximum number of shots is determined by
the user and in this case was kept to 3 and 15, respectively.
The total number of positions taken within this optimiza-
tion run was 95 including 10 random initial positions. The
resulting Pareto front contained 35 points. The results are
shown in Fig. 2 and when compared with the results of the
4D optimization shown in Sec. III B of Supplemental
Material, we see that the introduction of the four additional
parameters results in increased efficiency of the LWFA: the
efficiency increased from about 4% to 6.5% on average,
with up to 8.25% for one configuration. In this instance, we
can also see the same behavior where we have to reduce the
beam energy to yield low bandwidth beams. Additionally,
in our case the efficiency needs to be decreased and less
number of electrons injected to result in beams with lower
bandwidth. The four panels on the right side in Fig. 2 are
representative spectra of four selected points. As one can
see, a single multiobjective optimization can yield different

electron beams optimized at different energies. A user
could then a posteriori select the solution from among
these that is required for a particular application. Also
shown in the left panel of Fig. 2 as error bars are the
standard deviations of the charge and the energy due to
shot-to-shot fluctuations that we aimed to reduce with the
next optimization task. Multiobjective optimization can
also be applied to different objectives, such as a desired
target energy or stability. These additional results can be
found in Supplemental Material [25].
Once the Pareto front is established to a sufficient degree,

one can proceed to use the model for different goals,
leveraging its predictive capabilities to cater to changing
user preferences dynamically without running new opti-
mizations from the start. This approach is advantageous
compared to starting with single-objective optimization, as
the goals are now informed by a model that is less biased
toward a particular outcome. By separating the multi-
objective exploration and single-objective exploitation
phases, we present an efficient methodology for addressing
both phases. The GP model built during the Pareto
optimization can be reused to serve different user prefer-
ences more dynamically, such as energy tuning or targeting
specific beam parameters. This is achieved by exploiting
specific solutions using an a posteriori scalarization of the
objectives. Here, we use the upper confidence bound
acquisition (UCB) function, which considers both the
probability of yielding beams at a particular target energy
and the uncertainty of our prediction. By minimizing the

(a) (b) (c) (d)

FIG. 2. Identified Pareto-optimal configurations of the laser wakefield accelerator for an eight-dimensional Pareto optimization of
beam energy, charge, and energy spread. The energy spread is color-coded while the errorbars depict the standard deviation of charge
and energy. Regions of equal beam energy, and hence, accelerator efficiency, are shaded in gray. Note that the 8D optimization resulted
in higher efficiencies of the laser wakefield accelerator since it was able to also find better positions of the four new parameters that were
introduced in this optimization task. Panels (a)–(d) show representative spectra (similar beam parameters to average) for the respectively
marked points a–d from the Pareto front. The grayed out part of the spectrum is the low energy tail isolated through via the Gaussian
mixture model discussed previously.
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UCB function using a gradient optimizer [33], we obtain a
new eight-dimensional configuration of the laser Wakefield
accelerator that is most likely to generate electron beams at
the user-defined target energy.
To demonstrate the effectiveness of this approach, we

conducted iterative tuning by taking ten shots at each
suggested position, appending the new data to the GP’s
training data, and repeating this process 3 times for each
target energy. The results, referred to as iterative tuning
points. Additionally, we performed single-shot tuning
without appending any more data. The results are shown
in Fig. 3, where the iterative (single-shot) scan ranged from
150 to 400 MeV in 50 MeV (25 MeV) increments. The
results clearly demonstrate that our method allows for
accurate energy tuning over an octave in energy. The
successful single-shot tuning demonstrates the model’s
efficiency in rapid accelerator control, while iterative
tuning showcases its adaptability to long-term performance
drifts. Indeed, the concurrent movement across an eight-
dimensional parameter space exceeds the capability of even
the most experienced human operators. After tuning in the
appropriate range, the limits of the model were tested by
asking it to achieve a target energy of 600 MeV. There were
some shots that resulted in beams close to 600 MeV but on

average the beam energy was 470 MeV as shown in
Fig. 3(b). Furthermore, it is remarkable that this was
achieved using a model that was not particularly optimized
for this task; the GP was based on a multiobjective
optimization with a target energy of 250 MeV.
A more general approach to tuning the energy or the

other objectives can be obtained by inverting the input and
output domains. In this technique, the objectives (charge,
energy, bandwidth) become the input parameters and the
eight different parameters that are controlled become the
outputs. A model is then trained from the output objective
space Y to the input parameter space X which we call an
inverse model. This perspective makes it easier for the user
to formulate the problem of tuning. The user requests
particular beam parameters and the model then outputs the
required adjustments on the controlled parameters to
achieve that particular beam.
Inverting the forward model P½yjx;φ�, which maps from

the input space to the output space with parameters φ, is
challenging due to the difference in dimensionality. The
forward mapping is typically not one-to-one, meaning that
multiple input configurations can lead to the same output.
Consequently, a unique inverse function does not exist. To
address this issue, we propose a probabilistic approach that

(a)

(c) (d) (e) (f)

(b)

FIG. 3. (a) Energy tuning of the LWFA. The ideal tuning line is shown in blue while the experimentally attained iterative (single shot)
tuning points are shown in black (red). The error bars show the standard error of the mean. It can be seen that the optimizer is able to tune
the mean energy of the electron beam in the region between 150 to 400 MeV. (b) Probabilistic Pareto front. This shows the types of
beams that are accessible to the user with a certain likelihood. Colors represent the likelihood of attaining a particular value. Also shown
within the plot are both sets of tuning points. Note that the straight lines are a result of the domination concept, where a solution is
considered optimal if no other solution can improve one objective without sacrificing another at a given likelihood. (c)–(f) Maps of the
UCB acquisition function for four of eight input parameters and different target energies. Overlaid are the two most likely tuning curves
derived from the mixture density network represented by the median (solid line) and 95% confidence interval (shaded region) of the
associated mixture distribution. Transparency encodes their respective likelihood.
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learns a set-valued inverse mapping f−1∶ Y → Xm. In this
formulation, each desired beam property y is associated
with a set of possible accelerator configurations x1;…; xm,
rather than a single input. This allows us to capture the
inherent ambiguity in the inverse problem and to identify
multiple strategies for achieving a given beam property.
To model such a function while staying within a

probabilistic framework we propose the use of a mixture
density network (MDN) [34], where the probability dis-
tribution over inputs fx1;…; xmg for a given objective y is
given by a multimodal mixture distribution. Specifically, as
the input space is bounded, the eight dimensional unit
hypercube ½0; 1�8 after normalization of coordinates, we
chose a mixture of beta stochastic processes

P½xjy; π;α; β� ¼
Xm

i¼1

πiðyÞbeta½xjαiðyÞ; βiðyÞ�; ð1Þ

where αiðyÞ, βiðyÞ are the shape functions, and πðyÞ is
the mixture weight function, defining the local mixture at y
and learned by the MDN. The model is trained by
minimizing the negative log likelihood H½D; π;α; β� ¼
−
P

x;y∈D logP½xjy; π;α; β� of the data set D. Additionally,
a regularization term is added to ensure consistency
in expectation with the GP model (see Supplemental
Material, Sec. IV).
Using such an inverse model, a user can then tune

specific output objectives for specific applications. In
particular, the model can be queried with a tuning range
to obtain a probability distribution over all possible tuning
curves. In Fig. 3(c) through 3(f), we show the two most
probable tuning curves out of five for changing the median
energy from 150 to 450 MeV. These probabilistic tuning
curves show how the inputs must be changed in order to
obtain a certain output energy. It needs to be stressed that at
each E the distribution over input parameters Eq. (1) is such
that sampling from this distribution and running the
sampled values through the forward model, on average,
yields the correct energy. Each of the tuning curve
represents a certain strategy to obtain a desired electron
beam. One strategy that the inverse model correctly
identifies is moving the blade further into the gas jet to
reduce the electron beam median energy while compensat-
ing the focus position by a similar amount. Furthermore,
parameters such as blade height and dispersion are adjusted
subtly. It also suggests an alternative strategy where the jet
is moved along the focus position and second order
dispersion is increased, instead of relying on the blade.
Our results show that GP modeling and inverse mixture
models can not only perform well, but they can also inform
human operators about adequate strategies to change
accelerator parameters.
In conclusion, we have demonstrated the successful

application of multiobjective Bayesian optimization to
map the solution space of a laser wakefield accelerator

in a sample-efficient manner. The method reveals a wide
range of Pareto-optimal solutions that trade beam energy
and charge at similar laser-to-beam efficiency. Moreover,
we have shown accurate energy tuning of the LWFA from
150 to 400 MeV by simultaneously adjusting eight para-
meters. The proposed inverse model, trained on the forward
Gaussian process model, generates input parameter ranges
likely to yield the desired beam settings. This approach
uncovers different strategies for accelerator tuning and is
expected to significantly facilitate the operation of LWFAs.
These results represent an important step toward the
systematic optimization and control of laser-plasma accel-
erators, paving the way for their future applications in
science, industry, and medicine.
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