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ABSTRACT A novel application of a free-standing transmission
grating as a beam splitter in a Michelson-type interferometer is
described. The arrangement can operate in the XUV and soft
X-ray spectral region and, therefore, it is well suited for the
characterization of attosecond pulses. Using ray-tracing codes,
we have analyzed three different setups in which spherical mir-
rors are employed in conjunction with the transmission grating
and have investigated in detail their dispersive characteristics. It
is shown that such an arrangement can be made to exhibit group-
delay dispersion of ∼ 1 as2 while it provides two co-propagating
and converging beams.

PACS 42.60.By; 42.65.Re; 42.65.Ky

1 Introduction

The conjecture of producing a train of attosecond
pulses using high-order harmonic generation (HHG) was put
forward almost 10 years ago [1, 2]. More recently, detailed
theoretical investigations have confirmed this possibility and
shown that it is indeed conceivable to generate a train of at-
tosecond pulses or even a single attosecond pulse. The method
utilizes the coherent properties of the high harmonics pro-
duced in the interaction of laser light with atoms in a man-
ner analogous to the short-pulse production in mode-locked
lasers [3–6]. Nonetheless, it is only now that experimental
evidence has started accumulating, indicating that the fem-
tosecond barrier towards attosecond pulses might have fallen.
Attosecond beating resulting from the superposition of high
harmonics obtained by focusing a femtosecond laser pulse
in a gas jet has been experimentally observed [7, 8]. Fur-
thermore, the observation of single X-ray pulses ∼ 650 as in
duration has been recently reported [9, 10]. The challenging
problem is to find a measuring technique that unequivocally
verifies the existence of attosecond pulses. In this paper, we
describe such a technique, which appears to represent a viable
solution to the problem of attosecond-pulse characterization.
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In principle, one should be able to apply the well-known
techniques from femtosecond-pulse metrology, like succes-
sive optical auto-correlations of increasing order [11, 12] to
obtain the answer, i.e. characterize the attosecond pulse and
ultimately measure its exact duration. The difficulty arises
from the fact that, in contrast to femtosecond pulses, the
attosecond pulses are necessarily in the UV–XUV spectral
range and they are orders of magnitude weaker and spec-
trally much broader. The wavelength region below 100 nm is
notoriously the most difficult spectral region to handle exper-
imentally. It is characterized by a complete lack of refractive
optical components, and even reflective optics is either of low
reflectance or narrow bandwidth. However, the most demand-
ing requirement which an attosecond measuring arrangement
has to fulfill is that of almost dispersionless operation [13].
The various components of a measuring technique introduce
perturbations in the quantity to be measured, namely the pulse
duration, thus falsifying the results. For example, even a 5-fs
pulse passing through a 1-mm-thick fused-silica plate suffers
a fourfold temporal broadening. The problem becomes ex-
ceedingly more acute in dealing with sub-femtosecond pulses.

The temporal characterization of ultra-short pulses re-
quires the use of at least second-order auto-correlation and
hence of a non-linear detector with sufficient bandwidth and
sensitivity. In the case of femtosecond pulses with frequencies
in the visible spectral region, an amplitude-splitting interfer-
ometer (Michelson or Mach–Zehnder) in conjunction with
a second-harmonic crystal is commonly used [11]. Both basic
components, interferometer and detector, have to be appropri-
ately modified or adapted for operation in the XUV spectral
region. In this report, we have considered the prospect of de-
vising a beam-splitting interferometer using a free-standing
transmission grating, adapted for operation in the 10–100 nm
spectral region and, therefore, ideally suited for the tempo-
ral characterization of attosecond pulses. In conjunction with
focusing mirrors, this interferometer can be made to exhibit
dispersion characteristics that allow measurement of pulses
with a few attoseconds duration. In addition, it provides the
possibility to single out either one or a group of harmon-
ics. Although the second component needed, the non-linear
detector, has yet to be found, an alternative approach [14] in-
volving the cross-correlation technique is discussed and the
applicability of the grating interferometer presented here is
investigated.
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2 The transmission-grating interferometer

The idea of utilizing a grating as a beam splitter in
an interferometer is rather old. The natural splitting of an inci-
dent beam through dispersion has been exploited in a scheme
in which the two first orders are superposed with the zeroth
order by an imaging lens to give rise to an interference pat-
tern [15]. More specifically, a Michelson interferometer based
on a reflection grating, which combines the first order with
the zeroth order in a double reflection off the grating, is de-
scribed in [16]. The extension of this technique to the XUV
spectral range can be easily accomplished by using a normal-
or grazing-incidence grating. Given that the efficiency of the
reflection gratings varies strongly over the range of interest, it
is advantageous to use instead a transmission grating.

The concept is depicted in Fig. 1, where the transition
from the conventional Michelson interferometer to the grat-
ing interferometer is schematically shown. Both interferom-
eters split and recombine the incident beam into two co-
propagating beams and they provide the possibility of delay-
ing one beam relative to the other by translating one of the mir-
rors. The beam splitter normally used for wavelengths in the
visible region consists of a metallic layer on a glass substrate.
The option of using something similar in the region of interest,
i.e. in the XUV, is precluded as all materials are opaque to this
radiation. The function of the beam splitter is undertaken now

FIGURE 1 a The conventional Michelson interferometer used for the char-
acterization of femtosecond pulses in auto-correlation techniques. b The
extension of the Michelson interferometer for operation in the XUV spectral
range using a free-standing transmission grating as a beam splitter. In contrast
to the conventional Michelson interferometer where the mirror 3 is dispens-
able, in this case mirror 3 is spherical and plays a decisive role in reducing
the overall dispersion of the setup to acceptable limits

by a free-standing transmission grating as shown in Fig. 1b.
A monochromatic beam incident on the grating is diffracted
into one zeroth order and two first orders (for simplicity, only
one is shown in Fig. 1). Two mirrors reflect the zeroth order
and one of the first orders straight back through the grating. In
the second passage through the grating, the first order of the
primary zeroth order automatically propagates in the same di-
rection as the zeroth order of the primary first order. Because
of the equal number of dispersions into the first and zeroth
orders involved, the splitting of the original beam in the two
arms of the interferometer is exactly 50% independently of
the efficiency of the grating. The transmission-grating inter-
ferometer exhibits an additional feature, namely it spectrally
analyzes the incident radiation. This property is especially de-
sirable in case of gas harmonics produced by relatively long
laser pulses where the spectrum is discrete. Then, the isolation
of a single harmonic or a group of harmonics can be easily im-
plemented by simple geometrical obstacles like apertures or
knife-edges.

In order for this technique to work with attosecond pulses,
the grating and mirror configuration must be truly free of dis-
persion. This means that for light of a given wavelength λ, all
optical path lengths from the source to the detector must be the
same. In addition, the same must hold true for all the wave-
lengths within the spectrum of the light pulse. To attain these
requirements, the mirrors in the grating spectrometer have to
be spherical so that by imaging the grating into itself, the spec-
tral dispersion introduced by the grating can be eliminated.
The method resembles the zero-dispersion pulse compressor
arrangement used for shaping femtosecond laser pulses [17].
The details of the technique are the focus of this article and the
analysis of the optical configuration as given in Sect. 5 consti-
tutes the main results.

The isolation of a single harmonic or a group of harmonics
without substantially altering their duration has also been pro-
posed in a scheme described in [18]. It includes two reflection
gratings in an arrangement in which one grating compensates
for the dispersion introduced by the other. Also, a simple dis-
persionless auto-correlator utilizing a focusing mirror split
into two halves has been reported in [19]. The scheme, how-
ever, does not allow for a selection of a group of harmonics
and it auto-correlates two different cross-sectional parts of the
XUV beam, thus presuming transverse coherence.

3 Properties of the free-standing transmission
grating
As is schematically shown in Fig. 2a, the free-

standing transmission grating consists of equidistantly ar-
ranged parallel bars usually made of gold. The parameters
characterizing the grating are the grating constant d, which
corresponds to the spatial periodicity of the structure, and the
width of the gap between bars a. The cross section of the
individual bars is usually close to quadratic so that their thick-
ness is approximately ∼ d −a. The commercially available
gratings have 1000–5000 �/mm, which corresponds to a grat-
ing constant of d = 0.2–1 µm. Despite their fragility, these
gratings can be made to cover large areas with a diameter of
> 10 mm. To reinforce the fine structure, a coarser grid is used
with thicker bars. The periodicity of the coarser structure is
usually > 30 d so that its contribution to the dispersion of the
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FIGURE 2 a The one-
dimensional free-standing
transmission grating con-
sists of thin gold wires
with close to square cross
section. They are equidis-
tantly spaced with period-
icity d. The space between
wires is a. b Scanning elec-
tron microscope picture of
a 1000-�/mm transmission
grating manufactured by
Heidenhain GmbH [20]

incident radiation is negligible. An example of such a grating
fabricated by Heidenhain GmbH [20] is shown in Fig. 2b.

An important feature of these gratings, which is of pri-
mary importance to the application envisaged here, is their
flat spectral response. In the case of completely opaque bars,
Kirchhoff’s diffraction theory gives the following expression
for the mth-order efficiency, defined as the ratio of the energy
contained in the mth order to the total energy incident on the
grating [21, 22]:

ηm =
(a

d

)2
[

sin
(
mπ a

d

)
mπ a

d

]2

, m = 0, 1, 2, . . . . (1)

In contrast to the reflection gratings, the efficiency of the
transmission grating is a function of the ratio a/d only and
therefore independent of the wavelength. From (1), it is seen
that for a gap-to-grating-constant ratio of a/d = 0.5, the grat-
ing exhibits the maximum efficiency into the first order of
η1 = 1/π2 ≈ 10%, whereas 25% of the energy goes into the
zeroth order (η0 = 0.25). Assuming no losses from the mir-
rors, after a double passage of the beam on either the zeroth–
first-order or the first–zeroth-order arm through the grating,
the overall efficiency would be 2.5%.

The efficiency of the grating is given by (1) over a broad
spectral range. The short-wavelength limit is due to the fact
that eventually the gold bars become partially transparent to
the incoming radiation, thus rendering the pure amplitude
grating into a phase grating. This depends on the bar thick-
ness and material and, for a 1000 �/mm gold grating, occurs at
about λ = 10 nm (see [21, 22]). The long-wavelength limit is
for λ ∼ a, where transmission resonances appear and the effi-
ciency becomes strongly wavelength-dependent [23]. Hence,
for a 1000-�/mm gold transmission grating, the wavelength
range of applicability as a pure amplitude grating is from
10 nm to about 100 nm. For a Ti:sapphire laser, this corres-
ponds to a range between the fifth and the 80th harmonics of

the fundamental frequency. In addition, the simple form of the
transmission gratings provides easy alignment and large col-
lection angles.

4 The dispersionless arrangement

In ultra-short-pulse generation, gratings are rou-
tinely employed as spectral dispersive elements in pulse-
shaping techniques where the sign of group-delay disper-
sion can be appropriately controlled to stretch or compress
a chirped pulse. Gratings are also used in the complementary
technique of optical waveform synthesis by means of which
a femtosecond pulse can be manipulated to the user’s spe-
cifications [17]. In the latter scheme shown schematically in
Fig. 3a, a zero-dispersion pulse compressor is used in a such
a way that the output pulse is identical with the input pulse in
the absence of a pulse-shaping mask. This is accomplished by
setting up the lenses as a unit telescope in a 4 - f arrangement
and positioning each grating at the conjugate image plane of
the other. The mask acting as a spatial light modulator is posi-
tioned at the Fourier plane at the middle of the setup.

Figure 3 depicts the transition from a zero-dispersion
pulse compressor to a zero-dispersion Michelson interferom-
eter. Instead of a telescope, one can obtain a direct image of
each grating into the other with unit magnification by using
a single lens of the same focal length but positioned at the mid-
dle of the setup (see Fig. 3b). The difference from the previous

FIGURE 3 Transition from a zero-dispersion 4 - f configuration (a) to
a zero-dispersion arrangement consisting of two reflection gratings and a sin-
gle lens (b) and to a transmission grating plus spherical mirror Michelson
interferometer (c) where only one arm is shown. In the last setup, the trans-
mission grating takes over the role of the two reflection gratings and the
spherical mirrors replace the lens
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arrangement is that the Fourier plane is now located midway
between the lens and the second grating at the output and the
output beam is divergent. There is an additional difference that
will be discussed in more detail later on. The pulse at the out-
put has not suffered any dispersion, but the pulse front is now
skewed with respect to the propagation direction.

The final step towards a dispersionless Michelson interfer-
ometer for the XUV spectral region involves the replacement
of the lens by a spherical mirror and of the reflection grating
by a free-standing transmission grating. This is schematically
shown in Fig. 3c. As can be seen, the grating is located at
the geometrical center of the sphere defined by the radius of
the spherical mirror. This assures a one-to-one imaging of the
grating into itself. While all frequencies combine to form the
output beam as in the case of Fig. 3b, there is also the ze-
roth order of the reflected spectrum that exits the grating and
which will be the object of the ray-tracing analysis presented
in Sect. 5.

5 The ray-tracing analysis

Although the one-to-one imaging guarantees dis-
persion-free conditions, the overall performance of the ar-
rangement shown in Fig. 3c depends on several approxima-
tions mainly connected with the aberration-free behavior of
the spherical mirrors. To assess the influence of these compo-
nents, we have performed detailed ray-tracing calculations of
a specific arrangement of practical importance to the metrol-
ogy of attosecond pulses. The geometry is shown in Fig. 4
along with the relevant parameters. The inclusion of a third
mirror at the exit of the interferometer serves to refocus the
divergent beam and also to further image-relay the grating at
the detector plane. It introduces some additional freedom with
which the arrangement can be adjusted for optimum disper-
sion or focusing.

The analysis of the arrangement was performed using
a simple two-dimensional (2-D) ray-tracing code. For a more
realistic three-dimensional (3-D) analysis, we employed the
OPTICA package of MATHEMATICA [24]. These calcu-
lations deliver more information regarding the pulse-front

23m

3ms

s1
s

M2

b
s2

M3

detector plane

source grating

M1

FIGURE 4 The geometry of the grating Michelson interferometer where
the coordinate system and the parameters used for the ray-tracing codes are
defined. The specific values used for the three cases analyzed are given in
Table 1

propagation since they include both dimensions perpendicu-
lar to the propagation direction. The most important applica-
tion of the OPTICA package is, however, the analysis of a true
three-dimensional setup which is presented later on.

The basic ingredient in the 2-D code is the grating equa-
tion:

sin θin − sin θout = m Ngλ , (2)

with θin, θout the angles with respect to the perpendicular to
the grating surface of the incident and diffracted rays, respec-
tively, m the order of diffraction, and Ng = 1/d the number of
lines per unit length. The center of the grating opening is cho-
sen to be the origin of the coordinate system used. For a point
source located at a distance xs from the grating, a selected
number of rays are followed in their propagation through the
grating, reflection off the spherical surface of the mirror (M1
or M2), second passage through the grating again, and final
reflection off the focusing mirror (M3). A slit of width sg posi-
tioned in front of the grating determines the acceptance angle
of the setup. The total optical path l(ω) traveled by each ray
of a given frequency is measured at the detector plane located
at a distance b from the grating. This analysis is repeated for
the two different arms, i.e. the zeroth–first-order arm and the
first–zeroth-order arm. All mirrors are specified through their
radius rM1,2,3 and the coordinates xM1,2,3 and yM1,2,3 of the
center of the sphere of which they comprise a sector.

While the positions of the mirrors M1 and M2 are com-
pletely fixed by the requirement that the grating is imaged into
itself, the third mirror M3 can be positioned so that a point
along the direction of a specific harmonic has its image on
the detector plane. If θM3 is the angle of diffraction of the
harmonic and f the off-axis focal length of the mirror M3,
then the distance s1 = p+ s between object and mirror and the
distance s2 = p cos θM3 +b between mirror and image can be
determined by solving for p the following equation:

1

p + s
+ 1

p cos θM3 +b
= 1

f
. (3)

In general, the spherical mirror has two focal lengths
as a result of the astigmatism associated with it. The ver-
tical (sagittal) focal length fv = r cos(θM3/2)/2, which for
a parallel beam gives a line focus perpendicular to the plane
of incidence. The horizontal (tangential) focal length fh =
r/ [2 cos(θM3/2)], which for a parallel beam gives a line focus
parallel to the plane of incidence. In this way one can arrange
the position of the mirror so that either the horizontal or the
vertical focus is on the screen. For s = 0, the grating is imaged
relayed to the screen.

The path traveled by a light ray through a dispersive sys-
tem is a function of frequency. This is due to geometrical
factors associated with different deflection angles according
to wavelength. The phase-advance function φ(ω) when ex-
panded to a Taylor series in frequency contains coefficients
that are specific to the geometry of the arrangement [13]. Fur-
thermore, it has been shown that the first derivative of the
phase with respect to the frequency, the so-called group delay
D1, is exactly given by the relation [25, 26]:

D1 = dφ(ω)

dω
= l(ω)

c
. (4)
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Parameter Case-I Case-II Case-III

λL (µm) 0.8 0.8 0.8
Ng (�/mm) 1000 1000 1000
sg (µm) 350 350 350
xs (cm) −20 −20 −20
rM1 (cm) 30 30 30
xM1 (cm) 0 0 0
yM1 (cm) 0 0 0
rM2 (cm) 30 30 30
xM2 (cm) 0 0 0
yM2 (cm) 0 0 0
rM3 (cm) 60 60 60
xM3 (cm) 13.9 20.4 ∼ 20.0
yM3 (cm) −0.41 −0.25 ∼ 0.1
b (cm) 40 40 ∼ 38.45
n1 25 25 25
n2 37 37 39
nhc 31 31 31
θM3 (deg) 1.47 1.47 1.47
s (cm) 0 8.57 ∼ 8.57
s1 (cm) 46 48.1 ∼ 48.57
s2 (cm) 86 79.5 ∼ 78.45
h (mm) 0 0 1, 3, 5
D2 (fs2) < 1.0−3 < 1.0 < 1.2×10−3

TABLE 1 The parameters of the three cases investigated using the ray-
tracing codes. The origin of the coordinate system is located at the middle
of the grating aperture (see Fig. 4)

For a specific arrangement, once the optical path l as
a function of frequency has been determined, the group-
delay dispersion D2 that describes the temporal broadening
of a short pulse traveling through this arrangement is given
by [27]:

D2 = d2φ(ω)

dω2
= 1

c

dl(ω)

dω
, (5)

whereas the corresponding phase variation as a function of
frequency can be obtained from:

D0 = φ(ω) = 1

c

ω∫
ω0

l(ω′)dω′ +φ0. (6)

The latter quantity can be used for reconstructing the exact
temporal shape of the pulse upon exiting the system.

In what follows, we present the results of the ray-tracing
simulations for three specific arrangements involving a trans-
mission grating and three spherical mirrors. All the arrange-
ments under consideration are designed and analyzed from
the point of view of appropriateness for the investigation of at-
tosecond pulses resulting from the synthesis of a number of
phase-locked harmonics like those produced from atomic gas.
The values of the parameters that define each arrangement in
the way shown in Fig. 4 are given in Table 1.

5.1 Ray tracing: case-I

In this arrangement, the two spherical mirrors M1
and M2 have their centers at the middle of the grating and
the focusing mirror M3 is positioned in a such a way so that
the grating is imaged into the screen. This position is found
from (3) with s = 0. The results of the ray-tracing codes are

summarized in the left column of Fig. 5. We have consid-
ered a source emitting odd harmonics of the fundamental
frequency of a Ti:sapphire laser (λL = 0.8 µm). The grating
disperses all harmonics in the first order, but for simplicity
we have calculated only the optical paths of harmonics be-
tween n1 = 25 and n2 = 37. This can be rather easily accom-
plished in practice by mechanically obstructing the unwanted
harmonics or by aperturing the mirror M3 to include only
a specific selection. As central harmonic nhc we have taken
the 31st. The dispersion angle of this harmonic as obtained
from (2) determines the focal length of the mirror M3 and
its position through (3). For a grating with Ng = 1000 �/mm,
θM3 = 1.47◦.

The optical paths of these harmonics for both arms (zero–
first and first–zero orders) are given in Fig. 5 a (case-I). It
should be pointed out here that due to the different scales
used for the x- and y-axes the plot is strongly distorted. Al-
though not discernible in the plot, both arms of each harmonic
co-propagate after the second passage through the grating.
The ray-tracing code calculates the total length of the opti-
cal path for the central ray and for all paraxial but diverging
rays. For a given harmonic, the optical path difference at the
detector plane of each paraxial ray from the central (chief)
ray ∆l(n)

front = l(n)
paraxial − l(n)

chief yields the tilting of the pulse front.
This is depicted in Fig. 5b (case-I) for all harmonics consid-
ered. The difference in the arrival times between the central
ray and the extreme paraxial ray for each harmonic also at
the detector plane ∆t(n)

paraxial = max(l(n)
paraxial − l(n)

chief)/c is given
in Fig. 5c (case-I). As seen from Fig. 5b and c (case-I), in this
setup all harmonics have the same pulse-front skewness. The
3-D ray-tracing code confirms this and gives the complete 2-
D information regarding the pulse-front surface (see Fig. 5d
(case-I)).

The most important information pertaining to the applica-
tion envisaged for this setup is its dispersive characteristics.
Figure 5e (case-I) gives the difference in the arrival times at
the screen between the central harmonic (nhc = 31) and all
other harmonics. Albeit in a discrete form, this is the group
delay relative to the 31st harmonic as a function of frequency
(see (4)). Using a spline interpolation, a continuous function
can be obtained, the derivative of which gives the group-delay
dispersion (see (5)). The ray-tracing calculation reveals the
very important result that the difference in the arrival times of
the various harmonics around the 31st is less than 2 as. Using
(5) and for ωL = 2.36 fs−1 (λ = 0.8 µm), it is found that in
this spectral range the arrangement of case-I exhibits a group-
delay dispersion of D2 < 1 as2.

Since in an off-axis imaging using a spherical mirror there
are two focal lengths, the question arises of which one exhibits
the less dispersion. For the off-axis angle of θM3/2 = 0.735◦,
the ratio of the two focal lengths is fv/ fh = cos2(θM3/2) ≈
0.999835. This difference between the two foci is negligibly
small; however for path differences in the attosecond time
scale, it plays a role. Indeed, the group delay for fh is a factor
of five higher than the one shown in Fig. 5e (case-I), which has
been calculated for f = fv.

The advantage in this arrangement is that all harmonics
have the same spot size on the screen and they overlap exactly
irrespectively of the arm they belong to. Also, it exhibits an
extremely low dispersion of the order of an attosecond. This
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is considerably less than the one obtained in the compensated
grating configuration described in [18]. The spot size is the
image of the grating slit and, therefore, it is determined by the
magnification factor introduced by the mirror M3. In the ex-
ample analyzed, the spot size on the screen is about ∼ 650 µm.

5.2 Ray tracing: case-II

The main difference in this case compared to the
previous one is that instead of imaging the grating into the
screen, we have chosen to image-relay the source (here as-

case-I

beam2.pro

28. 9.2001

M2

M3 M1

D

GS

case-II

beam2.pro

28. 9.2001

M2

M3
M1

D

GS

a

b

c

d

e

FIGURE 5 Ray-tracing results. Case-I (left): the grating is im-
aged to the detector plane (s = 0). Case-II (right): the source
is image-relayed to the detector plane (s = 8.57 cm). a Optical
paths of the harmonics between n1 = 25 and n2 = 37 for both
arms (zero–first and first–zero orders). The exact geometry and
the parameters are shown in Fig. 4 while their values are given
in Table 1. The source is denoted by S, the grating by G and the
mirrors by M1, M2, M3. In the inset, a magnification is shown of
the image of the source for each harmonic at the detector plane
D. b Pulse-front tilting as a function of the spot radius rs for
all harmonics in both arms. In case-II, the dark lines represent
the pulse front of the harmonics from the first–zero-order arm,
while the light lines are from the zero–first-order arm. In case-I,
all harmonic pulse fronts in both arms coincide. c The difference
in arrival times between the chief ray and the extreme paraxial
ray for the harmonics n = 25–37. The symbols denote the two
arms (circle: zero–first, cross: first–zero). d The pulse front for
the central harmonic nhc = 31 at the detector plane as calculated
with the OPTICA package. The modulation in case-II is due
to numerical artifacts. e Points: the group delay relative to the
31st harmonic D1(ω) = [ln(ω)− l31(ω)] /c for the harmonics
n = 25–37. The symbols denote the two arms (circle: zero–first,
cross: first–zero). Dark dashed line: the group-delay dispersion
obtained by differentiation of the smooth spline-interpolation
(light dashed line) for the group delay

sumed to be a point source) to the screen. Both mirrors M1
and M2 form an image of the source in the space behind the
grating. After diffraction by the grating, the image is also
deflected, but for all harmonics lies on a circle with radius
sM1 = rM1 − vM1. The length vM1 is obtained from the lens
equation 1/ fM1 = 1/vM1 +1/uM1 with uM1 = rM1 − xs. Again
the 31st harmonic is taken as the central harmonic and the po-
sitioning of the mirror M3 is calculated from (3) with s = sM1.

In this case, the individual harmonics come to a focus on
the screen, but their foci are spatially separated. This is il-
lustrated in Fig. 5a (case-II). Also, the pulse fronts are more
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severely tilted than in case-I and the tilt for the two arms
is slightly different (see Fig. 5b (case-II)). Furthermore, the
tilt decreases with the harmonic number (Fig. 5c (case-II)).
The spot size is about 0.35 µm and due to the astigmatism
introduced by the mirror M3 considerably greater than the
diffraction-limited spot for the harmonic wavelength of λ31 =
0.8/31 = 0.026 µm. It should be mentioned here that the mod-
ulation observed on the pulse-front surface of Fig. 5d (case-II)
is due to numerical artifacts.

As expected, since the grating is not image-relayed to the
screen, this setup is not as dispersion-free as that studied in
case-I. Despite that, as can be seen from Fig. 5e (case-II),
the dispersion introduced is still quite low and acceptable for
measuring femtosecond pulses.

5.3 Ray tracing: case-III

A novel arrangement that combines the advantages
of the two cases already presented and is similarly based
on a transmission grating and spherical mirrors is shown in
Fig. 6. Unlike the previous two cases, this arrangement is
a 3-D setup and therefore only the OPTICA package with 3-D
capabilities can be used to assess the effect of aberrations.

Co-propagating fundamental and harmonic beams pro-
duced in a non-linear medium (NLM-1, e.g. gas jet) impinge
on the free-standing transmission grating G (Fig. 6). The ze-
roth order passes straight through while the beam diffracted
in one of the first orders disperses, resulting in well-separated
harmonic beams. In this way, a frequency range correspond-
ing to a set of harmonics can readily be selected using an iris
or appropriate obstacles. As in the setups discussed already,
the two spherical mirrors (M1 and M2) are used to redirect

FIGURE 6 Schematic showing the setup analyzed in case-III. Top: top
view. Bottom: side view. The slight tilting of mirrors M1, M2, M3 gives rise
to an elevation h at the grating G between incident and back-reflected beams,
thus allowing the co-propagation of the two arms after mirror M3. Each one
of the dispersed harmonics forms an image of the interaction region NLM-1
that lies on the circumference of a circle VI with center at the middle of the
grating. This image is further relayed to a second interaction region NLM-
2 where a cross-correlation process takes place. By appropriately aperturing
mirror M2 a selection of harmonics can be accomplished. The harmonics are
filtered out from the zeroth order by means of a filter F

the selected spectral range as well as the zeroth order back
through the grating. These two mirrors are positioned so that
they image the grating into itself. In contrast to the previ-
ous schemes, they are slightly tilted so that the back-reflected
beams are somewhat elevated in the vertical plane and thus
spatially separated by the elevation height h from the incom-
ing beam. In addition, the efficiency associated with the two
arms is not the same since one arm comprises the zeroth–
zeroth-order path and the other the first–first-order path. As
a consequence the overall efficiency for the first–first-order
path is ∼ 1%.

The between-image of the interaction region is different
for each harmonic but, as already mentioned, it is located
on a concentric circle with the circle corresponding to mir-
rors M1 and M2 and with radius < rM2/2. Upon exiting the
grating all the first orders of the selected harmonics become
co-propagating with the back-reflected zeroth order of the
fundamental. Finally, a third mirror (M3) further directs and
focuses the harmonic mixture and the fundamental to a sec-
ond non-linear medium (NLM-2). This last mirror relays the
between-image of the interaction region in the primary non-
linear medium into a secondary non-linear medium. A sim-
ple inspection of the geometrical arrangement immediately
reveals that in the 2-D geometry the setup is strictly disper-
sionless. All harmonics and the fundamental travel exactly the
same optical path. Furthermore, the harmonic source in the
primary non-linear medium is image-relayed to the secondary
one after a spectral selection has taken place. Consequently,
both requirements of low dispersion and focusing are satisfied
simultaneously in this layout.

The 3-D ray-tracing code is of particular importance now
in analyzing this setup since it can account for the effect of
the mirror tilt on the dispersion and focusing characteristics.
The ray-tracing results are summarized in Fig. 7 and in Fig. 8,
where for three different values of the elevation h, the front
tilt (Fig. 8a), the group delay (Fig. 8b), and the group-delay
dispersion (Fig. 8c) for the harmonics n1 = 25 to n2 = 39 are
shown. It is seen that even an elevation of h = 5 mm for the
outgoing beam above the incoming beam at the grating results
in a negligible deviation from the strictly dispersionless setup.

The pulse-front tilting is < 10 as for all the harmonics
between the 25th and the 37th (see Fig. 8a) with decreas-
ing tendency towards higher harmonics. More importantly,
the group-delay dispersion D2 is of the order of ∼ 1 as2 (see

FIGURE 7 Optical path of the n1 = 31 harmonic for both arms (zero–zero
and first–first orders). The geometry is shown in Fig. 6, whereas values of
pertinent parameters are given in Table 1
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FIGURE 8 Ray-tracing results for case-III with the indicated values for the
elevation h and for the harmonics n = 25–39. a The difference in arrival
times between the chief ray and the extreme paraxial ray. b The group de-
lay. c The group-delay dispersion obtained by differentiation of the smooth
spline-interpolation for the group delay (solid line in b)

FIGURE 9 The pulse front for the central harmonic nhc = 31 and for an
elevation h = 3 mm at the detector plane as calculated with the OPTICA
package. The observed modulation is due to numerical artifacts

Fig. 8c), which makes this arrangement especially suited for
attosecond-pulse metrology. The spot size given in Fig. 9
approaches the diffraction-limited one corresponding to the
wavelength for the 31st harmonic λ31 = 0.8/31 = 0.026 µm.
As the calculation is close to the limit of the numerical accu-

racy that one can expect from the results, the structure seen on
the spot pulse front could be due to numerical uncertainties.
Besides, the geometrical abberations may not be dominant in
this case in determining the spot size, as diffraction effects
may play a role.

6 Discussion and efficiency estimates

In the time domain, the superposition of a group of
phase-locked harmonics possessing approximately the same
amplitude leads to a train of sharp spikes at intervals of
TL/2 = π/ωL, i.e. half the laser period. The duration of each
spike depends on the number of harmonics involved and the
degree of chirp in each harmonic. For transform-limited har-
monics, each spike has a duration of ≈ TL/(2Nh), where Nh

is the number of harmonics in the superposition. More specif-
ically, the case we have considered in the ray-tracing analysis
consists of a group of seven harmonics of the Ti:sapphire laser
fundamental frequency centered around the 31st. Given that
TL = 2.67 fs, this would result in a train of successive spikes
with full width at half maximum ∆T 
 190 as. In the follow-
ing, we discuss the suitability of each of the setups we have
analyzed in experimentally investigating the characteristics of
this pulse train.

The setup discussed in case-I is ideally suited for first-
order (field) auto-correlation measurements of a group of har-
monics or of a single harmonic. In this case, at the detector
plane a linear detector would produce a signal proportional to:

SE(τ) =
+∞∫

−∞
|Etot(t)+ Etot(t − τ)|2dt,

where Etot is the total electric field and τ the relative delay be-
tween the two arms of the grating Michelson interferometer.
This type of measurement reveals the spectrum of the har-
monic superposition and its temporal coherence length. Only
if one knows beforehand that all harmonics are transform-
limited, the duration of each spike can be deduced.

The duration of a single harmonic can in principle be
measured using the setup studied in case-II. As has already
been discussed, each harmonic pair from the two arms after
the second passage through the grating is co-propagating and
focused in a spatially separated point at the detector plane. By
isolating a single harmonic Eωn through proper apertures and
assuming that a two-photon detector with enough sensitivity
is available, the interferometric auto-correlation trace

Sif(τ) =
+∞∫

−∞

∣∣∣[Eωn (t)+ Eωn(t − τ)
]2

∣∣∣2
dt

or the intensity auto-correlation trace

SI(τ) = 1 +2

+∞∫
−∞

[
Eωn(t)Eωn (t − τ)

]2
dt

can be obtained.
In conjunction with this application two factors have to

be considered. The first factor is the requirement of low dis-
persion. This can be satisfied if the mirror M3 is adjusted so
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that the harmonic under investigation becomes the central har-
monic. In this case and for a spectral range around the central
harmonic, the group-delay dispersion attains values close to
zero because the group delay exhibits a local maximum there
(see Fig. 5e (case-II)). The second factor is the harmonic fo-
cal intensity, which depends on the overall efficiency of the
setup. In addition to the double-pass efficiency of the grat-
ing ηg 
 0.025 (see 3), the reflectivity of the gold mirrors
has to be taken into consideration. For a perpendicular angle
of incidence and in the spectral range of 50–100 nm, gold
mirrors have a reflectivity of Rm 
 10%. Therefore, after re-
flection off mirrors M1, M2, and M3, the overall efficiency of
the setup is estimated to be ηtot 
 2.5 ×10−4. A second-order
auto-correlation measurement of the ninth harmonic from Xe
gas has been reported in [28], where two-photon ionization
of He was used as a non-linear process. In this experiment,
the focal intensity for the ninth harmonic was estimated to
be I9 ∼ 0.15 ×1012 W/cm2. More recently, two- and three-
photon ionization of rare gases using the fifth harmonic of
a Ti:sapphire laser with an estimated I5 ∼ 0.4 ×1012 W/cm2

has been reported [29]. If we assume that using the arrange-
ment of case-II the ninth harmonic can be isolated and fo-
cused to a spot size of the order of the harmonic wave-
length λ9 = 0.8/9 ≈ 0.1 µm, then the harmonic power re-
quired is P9 
 47 W. This appears feasible since the ray-
tracing analysis of case-II shows that the aberration-limited
focal spot is also ≈ 0.1 µm (see Fig. 8b and c (case-II)).
For a laser and harmonic pulse duration of τL = 60 fs and
τ9 ≈ τL/

√
9 = 20 fs respectively, the energy content of the

ninth harmonic should then be E(out)
9 
 1 pJ after the inter-

ferometer and E(in)
9 = E(out)

9 , /ηtot 
 4 nJ before it. Presuming
a quite plausible fundamental to harmonic conversion effi-
ciency of ∼ 10−6–10−7, this harmonic energy can be readily
delivered by a Ti:sapphire laser system with few mW power
output.

The fact that the sensitivity of the non-linear processes
drops rapidly for shorter wavelengths renders the method of
auto-correlation as not viable for measuring the duration of
harmonics or a group of harmonics in the XUV region. The al-
ternative approach for characterizing higher harmonics is then
cross-correlation techniques with the fundamental [8, 9, 14].
The arrangement analyzed in case-III has been conceived pri-
marily with this application in mind [14] and it possesses
all the necessary prerequisites. For example, the fundamen-
tal and harmonic beams are co-propagating (see Fig. 6), the
primary interaction region is image-relayed to a secondary
one, it exhibits attosecond group delay (see Fig. 8), and it can
be appropriately configured to select desired spectral regions.
Furthermore, a filter F positioned in the pathway of the zeroth
order eliminates all the harmonic radiation in the zeroth-order
arm while it attenuates to a desirable degree the fundamental.
An appropriate micro-positioning device on which mirror M1
is mounted allows for temporal delay variation between the
fundamental and the harmonics. An alternative approach to
achieve the same variation would be to insert in the path of the
fundamental a glass plate of appropriate thickness which can
be accurately rotated. Thus, the harmonic generation (or ion-
ization) signal produced from the interaction of the combined
beams with the secondary non-linear medium NLM-2 can be
monitored as a function of the delay of the fundamental. As

has been discussed in detail in [14], this signal when prop-
erly analyzed contains enough information to give the relative
phases of the harmonics with respect to the fundamental even
in the presence of harmonic chirp.

To estimate the magnitude of harmonic intensities needed
in order to perform such a cross-correlation measurement,
we consider a seven-photon ionization of an atom by the
fundamental vs its single-photon ionization by the seventh
harmonic. Since the available fundamental intensity is high
(say 1016 W/cm2), no considerations will be made about
the signal produced by it. Even after all losses, the funda-
mental will be strong enough to almost saturate the ion-
ization process. Then its intensity will have to be reduced
in order to make the two ionization amplitudes equal. For
the seventh harmonic, we assume a single-photon ioniza-
tion cross section σ = 10−18 cm2, a harmonic pulse dura-
tion τ7 = 10 fs, an interaction volume V = 10−12 m3, and
an atomic density � = 1024 m−3. We require production of
N = 10 ions per laser pulse, in order to have a well-observable
signal. For the numbers given above, a harmonic intensity
of 103 W/cm2 at the interaction volume would be sufficient.
Assuming four orders of magnitude overall losses at the grat-
ing and the mirrors, a harmonic intensity of 107 (W/cm)2 at
the generation focus is required. This is equivalent to a rea-
sonable fundamental to harmonic conversion efficiency of
about 10−7.

Although these estimates suggest that it would be pos-
sible to perform auto- or cross-correlation measurements
under realistic conditions, the overall efficiency of the grat-
ing Michelson interferometer can be increased if necessary.
A factor of ∼ 100 can be gained if instead of perpendicu-
lar, grazing-incidence optics is utilized. An envisaged setup
comprises an elliptical mirror with two identical gratings po-
sitioned at its foci. For a large enough eccentricity of the
elliptical surface, the rays diffracted in the first order by the
first grating are focused under a grazing angle into the sec-
ond one. The zeroth and first orders are thus recombined
and after exiting the second grating they co-propagate. This
arrangement needs to be assessed with respect to the ef-
fect of the geometrical aberrations and it is currently under
study.

A critical requirement for the successful application of
the method is the high surface quality of the mirrors M1 and
M2 and to a lesser extent of the mirror M3. As in a conven-
tional optical interferometer, low surface quality would lead
to low contrast fringes while a high degree of microrough-
ness leads to excessive scattering losses. The tolerances with
respect to the surface accuracy (deviation from the perfect ge-
ometrical shape) of the mirrors depends on the order of the
harmonics under investigation. For lower harmonics, mirrors
possessing high optical quality in the visible part of the spec-
trum, e.g. λ/20–λ/50 at 632.8 nm, can be readily obtained
and they would be of acceptable quality for the investigation
of fifth to the 15th harmonic of the Ti:sapphire laser wave-
length. For higher harmonics, high-precision optical compo-
nents should be used of the quality employed in synchrotron
radiation sources. The fabrication of a 50-mm-diameter spher-
ical mirror with surface accuracy of λ/10 at 50.0 nm and a mi-
croroughness of 5 Å for a spatial frequency of 1 mm−1 is well
within the feasibility limits of today’s technology [30].
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