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ABSTRACT: This paper presents a solution to the challenge of cross-device model
generalization in blood-based infrared spectroscopy. As infrared spectroscopy becomes
increasingly popular for analyzing human blood, ensuring that machine learning models
trained on one device can be effectively transferred to others is essential. However,
variations in device characteristics often reduce model performance when applied across
different devices. To address this issue, we propose a straightforward domain adaptation
method based on data augmentation incorporating device-specific differences. By
expanding the training data to include a broader range of nuances, our approach enhances
the model’s ability to adapt to the unique characteristics of various devices. We validate the
effectiveness of our method through experimental testing on two Fourier-Transform
Infrared (FTIR) spectroscopy devices from different research laboratories, demonstrating
improved prediction accuracy and reliability.

■ INTRODUCTION
Infrared spectroscopy has emerged as a powerful tool in
medical diagnostics, particularly in the analysis of human blood
samples.1−7 It has shown its ability to differentiate between
benign and malignant tissues,8,9 and identify unique spectral
fingerprints in biofluids,4,5 showcasing its potential to
revolutionize disease detection. Specifically, Fourier-transform
infrared (FTIR) spectroscopy achieves this by capturing the
absorption patterns of infrared light across different
frequencies,10 and serves as a tool in the identification and
analysis of a wide spectrum of biomolecules, such as proteins,
lipids, carbohydrates, and nucleic acids. This capability not
only can aid in the detection of diseases but also their ongoing
monitoring, underpinning significant advancements in medical
diagnostics.11−19

With the advent of large-scale observational studies
involving thousands of individuals and multiple follow-up
visits,20−22 the potential of infrared spectroscopy in under-
standing disease progression and personalized medicine can be
significantly amplified.23 By capturing the unique spectral
fingerprints of molecular components within blood samples,
such studies hold immense promise for advancing our
understanding of various health conditions. However, the
practical deployment of infrared spectroscopy in large
observational studies can be hindered by the challenge of
ensuring the generalizability of machine learning models across
different instrumentation setups. In particular, variations in
device characteristics, such as spectral resolution, noise levels,
and instrumental drift, pose significant hurdles to achieving

robust and reliable predictive performance across devices,
especially when dealing with data from large cohorts.9,24 In the
context of FTIR spectroscopy, the problem of cross-device
model generalization becomes particularly pronounced. Even
subtle differences between FTIR devices can result in
discrepancies in the acquired spectra, leading to a degradation
in model performance when applied to data from a different
device.

Domain adaptation techniques are becoming a standard
strategy across various fields, demonstrating their versatility
and effectiveness.25 In medical image segmentation, deep
stacked transformations augmentation techniques have estab-
lished a strong benchmark for domain generalization, rivaling
fully supervised methods in accuracy while enhancing the
feasibility of deep learning segmentation in practice.26

Similarly, in human activity recognition, data augmentation
significantly boosts model performance, particularly when
target data are unlabeled, offering practical solutions for real-
life scenarios such as assistive living monitoring with varying
viewpoints.27 The approach also extends to enhancing hate
speech detection by generating domain-adapted training data,
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thereby improving the model’s accuracy over different
domains.28 In the field of sound source localization, novel

data augmentation and weakly-supervised domain adaptation
methods address the challenge of scarce labeled training data,

Figure 1. Overview. This study utilizes blood sample measurements from a longitudinal sample collection framework to analyze and compare the
FTIR spectra acquired at two laboratory sites�one in Germany and one in Hungary�using instruments with largely identical nominal
specifications. Further details can be found in the Methods section. Blood plasma samples were collected from 96 participants, with 17 of these
samples used to calibrate the domain adaptation approach. Domain adaptation is achieved through data augmentation using a multivariate Gaussian
fit that incorporates the differences between the two devices. The augmented training data enhances the prediction models’ accuracy and reliability
when applied to spectra measured across different devices. These findings highlight the importance of domain adaptation and introduce a data
augmentation strategy that improves the generalization capability of classification models across various measurement sites.
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achieving comparable results to models trained on fully-labeled
real data.29 Furthermore, in face recognition, replacing
traditional face alignment with aggressive data augmentation
has led to remarkable accuracy, underscoring the method’s
potential to prevent overfitting in deep learning models.30

These examples collectively highlight the transformative
impact of domain generalization and data augmentation
techniques across diverse research areas. In contrast to the
above-mentioned domain adaptation techniques, for spectral
data also model transfer techniques have been developed. In a
similar approach, Tikhonov regularization-based model trans-
fer tries to fine-tune a classical ML/chemometric model to
work better with data from a secondary condition,31

augmenting or transforming the training dataset, so a transfer
to the secondary condition does not introduce errors32 or
EMSC-based model transfer33 generating adapted data
preprocessing techniques to mitigate the differences between
conditions, e.g., between setups.

Figure 1 provides an overview of the challenge of cross-
device model generalization in blood-based infrared spectros-
copy, along with the proposed solution. Our longitudinal study
involved samples from 96 fully healthy individuals, each with
2−4 follow-up visits. Our analysis synthesizes additional
follow-up visits for each subject to expand the dataset. We
propose a data augmentation technique that accounts for
differences across devices, enhancing the robustness and
transferability of machine learning models from one device
to another. By enriching the training dataset with synthetically
generated spectral variations reflecting the intricacies of both
devices, our method enables models to learn device-agnostic
representations of blood spectra, thereby improving general-
ization across devices. We experimentally validate our
approach using real-world blood samples measured on two
FTIR devices of the same type, located at different research
laboratories. Our results demonstrate improved prediction
accuracy and reliability when models are deployed on the
second device. It should be noted that although this study uses
liquid samples, the proposed method is sufficiently general to
apply to measurements on dried samples. This work enhances
the practical applicability of infrared spectroscopy in blood
analysis for large-scale clinical studies, addressing a funda-
mental challenge in model deployment across different
instrumentation setups.

■ METHODS
Sample Collection. In this investigation, we gathered

blood sample data from a longitudinal sample collection
framework of healthy individuals, with the study code:
H4H_HU_2020_Sample Collection (Study approval refer-
ence number: 2754-11/2020/EÜIG). Specifically for our
analysis, we employed FTIR spectroscopy to scrutinize blood
samples from individuals deemed fully healthy. In this context,
the spectra obtained from each individual can be interpreted as
repeated measurements, representing their unique “fingerprint”
of their healthy status. The analysis was conducted using two
FTIR instruments from the same manufacturer, located in
Garching, Germany, and Szeged, Hungary, respectively (see
details in the following subsection). To evaluate potential
differences between these instruments, we conducted parallel
analyses on blood samples collected from overlapping subsets
of participants using both devices. Precisely, in this study, we
examined blood samples from 79 participants across four
distinct visits and an additional 17 individuals across 2−3 visits.

For our subsequent analysis, we utilized the dataset from the
79 participants with four visits each as our training and test set,
resulting in a total of 632 spectra (2 devices × 79 participants
× 4 visits). The remaining 49 spectra from the 17 individuals
with 2−3 visits, also measured with both devices, were used as
a calibration set for domain adaptation.
Sample Handling and FTIR Measurements. In the

frame of this study, EDTA plasma samples are collected in 8
study centers all over Hungary. All 8 centers use the same
standardized procedures for blood draws and processing. The
obtained plasma is split into several 0.5 mL aliquots and stored
at −80 °C. To prepare samples for FTIR measurements, one
0.5 mL aliquot of plasma per sample was thawed in the
Garching lab, carefully mixed for 30 s by shaking and
centrifuged for 10 min at 2000g. Subsequently, four 90 μL
aliquots were generated and refrozen at −80°C. Hence, the
FTIR measurements were performed upon two freeze-thaw
cycles. Measurement aliquots for the Szeged lab were shipped
on dry ice from Germany to Hungary. After thawing, the
measurement aliquots were mixed again by shaking and
subsequently centrifuged. In Garching again 10 min at 2000 g
were applied here, while in Szeged aliquots were centrifuged
for 5 min at 2500g. However, that should not result in
measurable differences in the spectra. The samples were
measured in a fully randomized order. The samples were
aliquoted and measured in a blinded fashion, that is, the person
performing the measurements had no access to the clinical
information on the study participants, or which samples
belonged to the same individual.

For infrared spectroscopic measurements, a commercial
FTIR device specialized in the analysis of liquid samples in
transmission mode was used (MIRA Analyzer, CLADE
GmbH, formally known as Micro-Biolytics GmbH). Although
the Garching device is older (instrument version MA6) than
the Szeged device (instrument version MA7) the optical parts
of both devices are identical and so are the software versions
used. The main differences between the devices refer to the
auto-sampler unit, only. The flow-through transmission cuvette
was made of CaF2 windows with 8 μm optical path length. The
spectra were acquired with a resolution of 4 cm−1 in a spectral
range between 930 cm−1 and 3050 cm−1. A water reference
spectrum was recorded automatically after each sample
measurement to reconstruct the IR absorption spectra. The
manufacturer does not disclose the applied algorithm but tends
to overcompensate for highly concentrated sample types such
as human plasma. The actual path length was also determined
automatically at each measurement, and the spectra were
adjusted accordingly. Note that the MIRA Analyzer does not
allow access to the raw spectra but only the water-compensated
absorbance spectra of the sample. FTIR measurements were
performed in batches of 25 samples with a quality control
serum (pooled human serum, BioWest, Nuaille,́ France)
measured at the beginning of the batch and after five samples,
each, resulting in a batch size of 31. The quality control
samples allowed tracking of potential technical errors and drift
over the entire measurement period.
Data Preprocessing. The preprocessing of raw spectra

involved a three-step protocol. First, we truncated the spectral
regions below 1000 cm−1 and above 3000 cm−1. These
boundaries were chosen to exclude regions that consistently
lacked informative absorbance features and where signal
intensity typically declines. The cutoffs at 1000 and 3000
cm−1 also provided practical, standardized limits for array
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alignment across samples, ensuring consistent input dimen-
sions for subsequent analysis. Second, we applied L2
normalization to standardize the spectra. This involves scaling
each spectrum so that the sum of squared absorbance values
equals one. This approach preserves the relative intensity
patterns within each spectrum. Finally, we excluded the
spectral regions devoid of relevant peaks. Consequently, the
analysis focused on spectral data within the wavenumber
ranges of 1000−1750 and 2800−3000 cm−1.
Visualization of Spectrally Resolved Differences. To

visualize spectrally resolved differences between two groups of
measurements, we employed the concept of differential
fingerprints, as described in previous studies.4,7,19 Additionally,
we incorporated a widely used statistic known as the effect size
(Cohen’s d), which quantifies the magnitude of the difference
between two group means in units of pooled standard
deviation. This provides a standardized measure of how
distinct the groups are. The effect size is defined as

d
M M

s
1 2

p
=

where M1 and M2 are the group means, and sp is the pooled
standard deviation.34

Description of the Data and Classification Tasks. Our
initial training and test datasets comprised 632 preprocessed
FTIR spectra, each containing 493 wavenumber-absorbance
pairs obtained after preprocessing (as elaborated in the Data
Preprocessing section). These spectra were evenly distributed
between two distinct devices located in Garching, Germany,
and Szeged, Hungary, reflecting four separate visits involving
79 individuals (for information on cohort characteristics refer
to Figure S1/a in Supporting Information). We utilized these
493 standard-scaled absorbance values from each spectrum as
features for our analysis. To characterize the domain shift
between the two devices we developed logistic regression
models for two distinct classification challenges. In the multi-
class classification task, we aimed to differentiate individual
participants as classes, utilizing data from the fourth visit as the
test set. Conversely, for the binary classification model, we
trained it on data from 60 participants to predict the sex of the
remaining 19 individuals, thereby ensuring the model did not
overfit to individual characteristics (for basic demographic
distributions of participants within the training and test set
refer to Figure S1/b in Supporting Information).
Machine Learning Analysis. The machine learning

analysis commenced with preprocessed FTIR spectrum data
as the foundational dataset. Before utilizing these data as
features standard scaling was applied to all spectrum points to
ensure uniformity. This step is crucial, especially for logistic
regression models, as it normalizes feature scales, enhancing
model convergence and prediction accuracy. We consistently
used the logistic regression algorithm from Scikit-learn for all
classification tasks.35 An L2 penalty was applied, which
regularizes the model by discouraging large coefficient values
through the addition of their squared sum to the loss function.
We used the liblinear solver for optimization.36 The
regularization parameter was fine-tuned through a 3-fold grid
search with stratified splits of the training set over the values C
= [0.001, 1, 10]�resulting in C = 10 in most of the cases. This
approach yielded robust performance in the train set in both
binary and multi-class classification scenarios.

Model-Based Data Augmentation. To improve the
performance and robustness of our trained models, we
introduced model-based data augmentation to artificially
expand the number of repeated measures per individual. The
augmentation method is based on fitting a multivariate
Gaussian (MVG) distribution. Such an approach for simulating
spectral data has been previously used in the context of Raman
spectra of single cells.37 Initially, we explored incorporating an
MVG fitted to the training spectra of each individual (model
1). Additionally, we investigated MVGs for each individual,
consisting of the person-specific mean and the element-wise
averaged covariance matrix over all individuals (model 2).
However, as illustrated in Figure 3, these augmentation
approaches exhibited negligible impact on performance. In
contrast, our proposed augmentation method involved utilizing
an MVG that integrates within-person variability, extracted
from the calibration set, into its covariance matrix (model 3).
For this model, the mean spectrum p̅i was individually
extracted for each participant, while the covariance matrix
remained consistent across all subjects. This constant
covariance matrix was computed by averaging element-wise
over all 17 person-specific covariance matrices, derived from
the two to three measured spectra of each individual in the
calibration set. The covariance matrices of model 2 and model
3 are shown in Figure S3 in Supporting Information. Formally,
model 3 is described as follows

i
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where W stands for the number of grid points on which the
spectrum was measured and H denotes the number of study
participants in the calibration set. In our study W = 1037 and
H = 17. pi is the matrix containing measurements as its rows. A
schematic overview of all three augmentation models is
provided in Figure S4, with explicit descriptions available in
Section C in Supporting Information. For an explanatory 2D
visualization of the augmentation models refer to Figure S5 in
Supporting Information. The source code for model 3 is
available on Github.38 Also, it is important to acknowledge that
a comparable methodology, grounded in prior research,23 has
been formulated to integrate various types of unrepresented
sources of variation commonly encountered in real-world
applications into a given dataset.39 For results using this
methodology, see Figure S6 in Supporting Information.

■ RESULTS AND DISCUSSION
In the following, we provide a descriptive analysis of the
spectral differences between the two sites in our study.
Building on this, we perform domain adaptation using tailored
augmentation approaches, which are then tested on real
infrared samples measured with two infrared spectroscopy
devices from different research laboratories.
Cross-Device Spectral Differences. Substantial spectral

differences between the two sites are evident in the measured
data, with certain wavenumber regions showing markedly
different absorbance distributions, indicative of device-specific
differences (Figure 2/a). Given that the samples from the same
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individuals were measured using both instruments, these
discrepancies must stem from differences in instrumentation or
sample handling. In addition, we analyzed quality control
(QC) samples�pooled human blood sera aliquots measured
at both sites�under identical conditions. The corresponding
spectral distributions (Figure 2/b) show similar inter-site
discrepancies as the investigated samples. These discrepancies
are further quantified through differential fingerprints and
effect sizes, where several regions exhibit very large to huge
differences based on Cohen’s d thresholds34 (Figure 2/c),
highlighting that the domain shift is both broad and
substantial. Notably, while within-person variability (WPV)
differs significantly between the two sites when assessed
separately, the WPV values for both the calibration set (49
paired spectra measured at both sites) and the combined
dataset (632 paired spectra from both sites) are highly
consistent (Figure 2/d). This consistency supports the
suitability of the calibration set for domain adaptation, as it
effectively captures inter-site variability while smoothing over
device-specific characteristics.

The existence of these variations facilitated the development
of a logistic regression model capable of distinguishing
between the two instruments with 100% accuracy, thereby
highlighting their unique characteristics. However, while this
finding is notable, the primary objective of our investigation
was to determine whether these disparities significantly

influence clinically relevant classification tasks. To address
this, we trained both binary and multi-class classification
models using data exclusively from one device and
subsequently evaluated their performance using data from
both instruments. This approach enabled us to directly
evaluate how device-specific spectral differences influence
model performance across devices, providing insight into
their impact on key classification tasks.
Cross-Device Evaluations with Measured Data. To

investigate how spectral variances unique to each measurement
tool affect predictions across devices, we constructed and
assessed binary and multi-class classifiers. These classifiers were
trained exclusively with data from a single instrument and then
evaluated on test datasets collected from both devices. For
multi-class classification, where classes were defined by
individual participants, the accuracy scores for data from
Szeged and Garching were notably high, at 0.84 and 0.76,
respectively, significantly surpassing random chance levels (1/
79 ≈ 0.013). However, applying these models to cross-site data
revealed a pronounced reduction in prediction accuracies,
falling to 0.65 and 0.66. In the scenario of binary classification
for determining the sex of participants not seen during training,
the within-site Area Under the Curve (AUC) values were 0.92
for both Szeged and Garching data. These values declined to
0.86 and 0.81, respectively, when the models were applied to
cross-site data. These findings highlight the critical impact of

Figure 2. Measured data: (a) Preprocessed FTIR spectra of blood plasma samples, with data from the two sites differentiated by color. (b) FTIR
spectra of 40 aliquots of the same quality control sample (Human Serum AB male HIV tested − S4190 − BioWest; sourced from a pool of AB male
blood) measured at each site. (c) Differential fingerprints are obtained by subtracting paired spectra from each site and then taking the average.
Additionally, the effect size (Cohen’s d) is plotted alongside. Generating this analysis for each of the four visits separately reveals a consistent
pattern, although both the average differences and the effect size diminish as the number of visits (and thus, time) increases. (Refer to Figure S7 in
Supporting Information for more details.) (d) Average within-person variability using the train and test sets for the two sites separately (dashed
lines) and combined (solid dark red line), and using the calibration set from both sites (solid dark blue line).
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device-specific variations also on relevant classification tasks
(see Figure 3/a).
Cross-Device Evaluations with Augmented Data.

Following this, we enriched our dataset by simulating spectra
for each site, artificially increasing our dataset by 100
additional visits per individual. We explored the impact of
three data augmentation techniques: the first model applied
the Multivariate Gaussian (MVG) distribution fit to each
individual’s training spectra separately (model 1), the second
model leveraged the full training set of the given site to capture
within-person variability (model 2), while the third model used
the covariance matrix gained from the calibration set
comprising of spectra from both sites and thus capturing
cross-device domain shifts (model 3).

Incorporating the simulated spectra from model 1 markedly
improved prediction accuracy for within-site evaluations.
Specifically, multi-class classification accuracies, predicting
individuals, rose from 0.84 and 0.76 to 0.90 and 0.87. Yet,
this improvement did not extend to cross-site predictions,
which altered from 0.65 and 0.66 to 0.57 and 0.66. A similar
pattern was observed for classification tasks regarding sex,
where within-site AUC scores remained constant, but there
was no consistent improvement in cross-site scores. Hence,
while this method enhanced or maintained within-site
prediction accuracy, it did not bridge the gap between within-
and cross-site prediction accuracies (refer to Figure 3/b).

Utilizing model 2 also markedly enhanced the accuracy of
within-site predictions. However, compared to model 1, using
model 2 showed no improvement regarding the prediction
accuracy in any of the classification tasks.

Incorporating new spectra through model 3 improved the
predictions for both binary and multi-class classification tasks.
For multi-class classification, this approach not only improved
within-site predictions but also significantly enhanced cross-
site predictions. The accuracy scores for cross-site predictions

rose from 0.65 and 0.66 to 0.81 and 0.90, respectively. These
results indicate that prediction accuracy is driven by the test
site rather than the training site, as models trained on either
Garching or Szeged data achieve 0.81−0.84 accuracy on
Garching test data and 0.89−0.90 on Szeged test data. For
binary classifications, the AUC for cross-site predictions rose
above 0.90, essentially matching the AUC for within-site
predictions. Ultimately, this approach successfully addressed
the differences in prediction accuracies between within-site and
cross-site evaluations, as shown in Figure 3/c. For a detailed
comparison between the within and cross-site performance of
the original and augmented data refer to Table 1.

These results underscore the critical importance of
incorporating cross-device differences in the data augmentation
for simulating new spectra. In particular, the average within-
person variation (WPV) exhibits significant differences when
considering the sites separately versus together. Moreover, the
WPV of the calibration set effectively captures the WPV of

Figure 3. Comprehensive visualization of the model performances for multi-class (upper row) and binary classification (lower row) tasks, using
original (a), model 1 augmented (b), model 2 augmented (c) and model 3 augmented (d) datasets. In the case of multi-class classification, the red
dashed line shows the random chance accuracy level. Table 1 summarizes the performance of the original and the augmented models on the test
set. Additional ROC curves when using a stratified separation of the datasets with respect to the sex can be found in Figure S2 in Supporting
Information.

Table 1. Multi-class Accuracies and Binary Classification
AUC

multi-class classification for individuals

accuracy scores Sz → Sz Sz → G G → G G → Sz

original data 0.84 0.65 0.76 0.66
aug model 1 0.90 0.57 0.87 0.66
aug model 2 0.92 0.54 0.85 0.67
aug model 3 0.89 0.81 0.84 0.90

binary classification for sex

AUC Sz → Sz Sz → G G → G G → Sz

original data 0.92 0.86 0.92 0.81
aug model 1 0.93 0.87 0.92 0.77
aug model 2 0.93 0.83 0.93 0.81
aug model 3 0.89 0.90 0.93 0.92
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both the train and test sets combined across sites (see Figure
2/c). Models 1 and 2, which utilized WPV from the sites
separately, were outperformed by model 3, which incorporated
the WPV most representative of the combined sites,
specifically the WPV of the calibration set for the simulation
of additional visit data for the individuals. This enhancement is
due to model 3’s ability to simulate spectra that incorporate
information on domain shifts, significantly improving both
within-site and cross-site prediction accuracies. This demon-
strates model 3’s superior capability in bridging the gap
between within-site and cross-site predictive performance,
highlighting its enhanced utility in managing device-specific
spectral variations. Given its evident superiority, we exclusively
adopted model 3 for further analysis.

In addition, we explored how many simulated visits were
necessary to make the two sites appear almost identical. In
multi-class classification, which focuses on identifying individ-
ual identities, adding about 10 simulated visits to each site was
enough to effectively equalize the accuracy between cross-site
and within-site prediction. On the other hand, for binary
classification targeting prediction of sex, about 60 simulated
visits were necessary to bridge the AUC gap between the
predictions on the same sites, and additional simulated visits
did not lead to any notable further improvements in
performance (see Figure S8 in the Supporting Information
for more details).

Following data augmentation with model 3, the datasets
from the two sites exhibited reduced separation within the
principal component space (refer to Figure 4/a), and the peaks
previously observed in the effect size were notably reduced
(refer to Figure 4/b). For PCA scatter matrices of the first four
principal components of model 1 and model 2 refer to Figure
S9 in Supporting Information.

To deepen our understanding of the impact of data
augmentation, PCA was conducted independently for both
sites, initially with the original dataset and subsequently with
the model 3 augmented dataset. We then examined the first
four principal components�which accounted for approx-
imately 82% of the explained variance in the original dataset
and 83% in the augmented dataset�across both sites before
and after the inclusion of simulated data. This comparison
revealed a notable alignment of these principal components
across the two sites (refer to Figure 4/c). The alignment of the
principal components with the inclusion of simulated data
indicates a harmonization in the data distributions between the
two sites, making them more similar and less distinguishable
(see Figure S10, Figure S11, and Figure S12 in the Supporting
Information). This outcome is consistent with the closing of
the accuracy gap observed between cross-device and within-
device predictions. Essentially, data augmentation not only
aligns key features across devices but also enhances the model’s
cross-site predictive capabilities.

Figure 4. Impact of data augmentation with model 3: (a) Scatter matrices illustrate the comparison of the first four principal components pre- and
post-data augmentation, revealing a diminished distinction between data from the two sites following the inclusion of simulated visits. Furthermore,
the data distributions along the principal components have grown more similar in shape. (b) The change in effect size (Cohen’s d) before and after
the inclusion of simulated data. The effect size diminished significantly, with the notable reduction of peaks observed with the original data. (c)
PC2 for both sites before and after data augmentation, highlighting how the addition of simulated data aids in aligning this principal component. A
similar pattern is observed with the other principal components as well (refer to Section H in Supporting Information for further details regarding
PCA for models 1−3).
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■ CONCLUSIONS
Our study addressed the critical challenge of achieving cross-
device model generalization in a longitudinal dataset of 79
individuals across multiple follow-up visits. Variations in
instrument setups, such as differences in spectral resolution
and noise levels, introduced significant dataset shifts. These
shifts create major obstacles to deploying infrared spectroscopy
in clinical settings, particularly in large-scale studies involving
data collected from multiple laboratories.

To address this, we implemented a data augmentation
strategy that encapsulates cross-device differences, presenting a
straightforward domain adaptation approach designed to
enhance the generalizability and robustness of machine
learning models across various FTIR devices. By synthesizing
spectral variations, this method enables the development of
domain-generalized models capable of making accurate
predictions on new devices, regardless of the device used for
initial training. Our experimental validation on real-world
blood samples measured with two distinct FTIR devices
confirms the efficacy of our approach, demonstrating improved
prediction accuracy and reliability when models are applied to
data from an alternative device.

The implications of our work extend beyond improving
cross-device generalization in FTIR spectroscopy for blood
analysis. It facilitates the broader adoption and practical
application of infrared spectroscopy in large multi-center
clinical studies, aiming to address early-stage disease detection,
screening, and health monitoring. By overcoming device
variability and model generalization challenges, it is possible
to enhance the accuracy and reliability of disease diagnostics
and significantly contribute to the evolving field of medical
diagnostics.

In conclusion, our research underscores the critical
importance of developing robust, device-agnostic machine
learning models or methods for adapting and refining trained
models to advance infrared spectroscopy in medical
applications. Incorporating sophisticated domain adaptation
techniques, such as data augmentation and cross-device
generalization strategies, will be crucial for unlocking the full
potential of infrared spectroscopy, particularly in large clinical
studies involving multiple laboratories. Future research should
extend this approach to address variations related to sample
handling, experimental workflows, and study protocols.
Insights from these variations could inform the development
of ML-grade calibration procedures and improved preprocess-
ing methods, further minimizing setup-related discrepancies.
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