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Abstract. This study explores the characteristics and interpretation of 
infrared molecular fingerprints (IMFs)—blood-based profiles that cap-
ture broad molecular information—for applications in precision medicine. 
Using data from 4,196 healthy individuals across five longitudinal 
visits, we integrated Fourier-transform infrared (FTIR) spectroscopy 
with routine clinical chemistry tests. IMF measurements showed high 
inter-individual and low intra-individual variability, indicating stable 
and unique molecular profiles over time. Machine learning models re-
identified individuals with over 90% accuracy based solely on their IMF 
data, highlighting strong individual specificity. To enhance diagnostic 
resolution, we quantified within-person and between-person variability 
across the infrared spectrum. A tree-based optimization algorithm strat-
ified individuals into sub-cohorts by maximizing the Index of Individ-
uality, minimizing between-person variability to levels close to within-
person. The algorithm was based on 27 blood parameters and three 
demographic variables, producing hierarchical splits based on averaged 
longitudinal values. We further modeled the relationships between IMFs 
and clinical parameters using linear regression, revealing robust, biolog-
ically interpretable associations. To uncover latent physiological struc-
ture, we applied Pareto Task Inference (ParTI), which identified a tetra-
hedral organization in the combined IMF-clinical data space, represent-
ing four archetypal physiological states. Individual trajectories within 
this space may serve as early indicators of health deviation. Archetypes 
were further characterized using demographic and health-related data, 
supporting hypotheses on systemic trade-offs in health maintenance. 
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1 Introduction 

Advancements in precision medicine increasingly depend on comprehensive 
molecular profiling to capture the dynamic complexity of human health [ 1]. 
Among emerging technologies, infrared molecular fingerprinting (IMF) of human 
blood via Fourier-transform-infrared (FTIR) spectroscopy has shown promise as 
a blood-based tool for assessing physiological and biochemical states [ 2– 5]. By 
detecting vibrational signatures of biomolecules, IMF provides a holistic molecu-
lar snapshot, offering potential for individualized health monitoring and disease 
prediction [ 6– 16]. Recent studies have demonstrated the feasibility of IMF for 
cancer detection and multi-phenotype health screening using blood-based sam-
ples [ 7, 9], highlighting its potential as a cost-effective, high-throughput tool for 
large-scale health monitoring. However, its integration into large-scale longitu-
dinal health profiling studies remains largely unexplored. 

In this study, we leverage an expanding prospective longitudinal health pro-
filing cohort [ 17] to systematically evaluate the stability, variability, and inter-
pretability of IMF data in healthy individuals. Analyzing blood samples from 
4,196 participants with at least five visits, we assess intra- and inter-individual 
variations in infrared molecular profiles and their correlation with routine clinical 
chemistry markers. 

Our findings demonstrate that IMF data exhibit high individuality and sta-
bility over time, reinforcing previous research [ 6]. Additionally, we show that 
IMF data encode information on the concentrations of various clinical analytes 
commonly measured in standard blood tests, corroborating prior findings from 
an independent cohort [ 9]. This shared molecular information enhances the inter-
pretability of IMF data. Furthermore, sub-cohorts of molecularly similar indi-
viduals can be identified using the clinical chemistry blood panel. We show that, 
within these sub-cohorts, inter-individual variability approaches intra-individual 
levels, effectively reducing baseline variation. This stratification could enable 
more precise and personalized early disease detection and health monitoring. 

The longitudinal nature of our study further allowed us to explore meth-
ods for extracting interpretable individual health trajectories. Specifically, we 
applied Pareto Task Inference (ParTI)—a framework for inferring biological 
tasks from high-dimensional data—to both the IMF and clinical chemistry panel 
data [ 18, 19]. This analysis revealed a tetrahedral organization of interpretable 
states, suggesting a constrained space of molecular variability. We linked lifestyle, 
anthropometric, and health variables to this geometric structure by employing 
an enrichment method. Individuals thus navigate on an interpretable molec-
ular landscape, enabling the characterization of individual health trajectories 
and potentially signaling transitions from wellness to disease before conventional 
biomarkers detect pathology.
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Table 1. Characteristics of study cohort 

# Subjects Age BMI 
Female 2,839 .52.02± 0.18. 26.61± 5.04

Male 1,357 .52.02± 0.16. 28.45± 4.29

Total 4,196 .52.02± 0.17. 27.21± 4.88

2 Longitudinal Study Overview 

In this work, we utilize blood plasma samples from a longitudinal study involv-
ing healthy individuals [ 17], with study code H4H_HU_2020_Sample Collection 
(study approval reference number: 2754-11/2020/EÜIG). As part of this study, 
FTIR spectroscopy was employed to analyze the collected blood plasma sam-
ples. In addition, a clinical chemistry panel consisting of 27 blood parameters 
was collected, together with demographic, lifestyle, and health-related informa-
tion on the subjects. The spectroscopic measurements were performed using a 
commercial FTIR device designed for liquid sample analysis (MIRA-Analyzer, 
CLADE GmbH) and pre-processed similarly to previous studies [ 4, 6, 7, 9, 11]. 
The pre-processed FTIR spectra are shown in panel Fig. 1(a). 

The cohort consists of 4,196 subjects who had at least five visits. The first 
four visits occurred approximately 130 days apart, while the interval between 
the fourth and fifth visits was around 150 days, resulting in an average interval 
of approximately 1.5 years between the first and fifth visits. The basic charac-
teristics of this cohort are summarized in Table 1. The study population consists 
of significantly more female than male participants. The age distribution across 
sexes is nearly identical, while the BMI of males is slightly higher than that of 
females. 

3 Stability of Infrared Molecular Profiles 

This section uses multi-class classification to examine the stability and person-
specific nature of blood-based molecular profiles. Logistic regression models were 
trained using the Python package Scikit-learn [ 20] to identify individuals based 
on FTIR spectral data, clinical chemistry panel data, and their combination. 
This analysis was performed on 50 individuals. Figure 1(b) shows that the clas-
sification accuracy increases with the number of visits used for training, reaching 
0.90 for FTIR, 0.96 for clinical chemistry, and 0.98 for the combined data when 
training on four visits and predicting the fifth. 

To assess the robustness of the models, cross-validation was used with four 
visits for training and one for testing. Figure 1(c) displays the resulting confusion 
matrices. The mean classification accuracies were 0.924 . ± 0.069 for FTIR, 0.908 
. ± 0.057 for blood panel data, and 0.960 . ± 0.043 for their combination, with no 
statistically significant differences between models. 

These findings demonstrate that both spectral and biochemical data capture 
stable, individual-specific signatures across repeated visits.
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a) 

c) 

b) 

Fig. 1. Multi-class classification of 50 subjects with five visits, predicting individual 
identities using three different feature sets: FTIR data (519 spectral points), blood 
panel data (27 measured blood parameters), and their combination. a) The 250 FTIR 
spectra used for this analysis. b) Classification accuracy trends as additional visits 
are added to the training set, with predictions made on the next visit. c) Multi-class 
classification models trained on four visits and tested on the remaining visit using a 5-
fold cross-validation procedure. Confusion matrices display results for the three feature 
sets in the order described above. 

4 Blood Analyte Information Encoded Within Infrared 
Molecular Profiles 

This section investigates shared information between the IMF data and the 27 
clinical chemistry blood parameters. Specifically, we trained partial least squares 
regression models [ 20] to predict clinical chemistry variables from the IMF fea-
tures. The analysis was performed using 5-fold cross-validation to ensure robust 
and reliable results. Table 2 summarizes the cross-validation performance for the 
ten best-performing blood parameters. Parameters are ranked by the models’ 
predictive performance in terms of mean .R2, mean-square deviation (MSE), and 
Pearson correlation coefficient values between the predicted and the measured 
parameter values. 

Strong predictive power was observed for glucose and lipid profile mark-
ers, all showing .R2 values above 0.80. Moderate predictability was found for 
hemoglobin, hematocrit, creatinine, albumin, and total protein. These findings 
confirm results presented in previous work based on a different cohort [ 9] and  
enhance the interpretability of IMF data.
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Table 2. Cross-validation results for regression models 

Analyte R.
2 Relative MSE Pearson’s r 

Triglycerides .0.876± 0.024.0.125± 0.032 . 0.937± 0.013

Glucose .0.864± 0.023.0.135± 0.019 . 0.930± 0.012

Total Cholesterol.0.852± 0.005.0.148± 0.008 . 0.923± 0.003

HDL Cholesterol .0.843± 0.013.0.157± 0.016 . 0.918± 0.007

LDL Cholesterol .0.803± 0.001.0.197± 0.002 . 0.896± 0.001

Creatinine .0.600± 0.004.0.400± 0.007 . 0.775± 0.002

Hemoglobin .0.584± 0.013.0.416± 0.014 . 0.765± 0.008

Hematocrit .0.523± 0.015.0.477± 0.020 . 0.723± 0.010

Total Protein .0.462± 0.010.0.538± 0.011 . 0.680± 0.008

Albumin .0.472± 0.013.0.527± 0.012 . 0.688± 0.009

5 Individual Variation in Infrared Molecular Profiles 

Personalized preventive medicine requires an understanding of an individual’s 
molecular profile and its natural variability over time. Frequent molecular sam-
pling could establish individualized biomarker baselines, allowing for to distinc-
tion of normal fluctuations from disease signals more sensitively. This may, e.g., 
be crucial for early disease detection. However, logistical and financial con-
straints make this approach impractical. An alternative is to group individu-

Table 3. Clinical chemistry and demographic parameters that resulted in the greatest 
increase in the Index of Individuality (IoI) when used for grouping similar individuals. 

Covariate IoI Increase 
Total Cholesterol 0.0449 
Triglycerides 0.0389 
LDL Cholesterol 0.0270 
Insulin 0.0164 
Glucose 0.0103 
Hba1C 0.0100 
Albumin 0.0100 
Total Protein 0.0091 
CEA 0.0063 
Calcium 0.0056 
Age 0.0081 
BMI 0.0061 
Sex 0.0051 
Combined 0.2112
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a) 

b) 

c) 

Fig. 2. The three plots show the within-person variability (a), between-person variabil-
ity (b), and Index of Individuality (c). Grouped data reduces between-person variability 
compared to the original data, while within-person variability remains consistent, lead-
ing to an increased Index of Individuality. 

als with similar molecular profiles, enabling broader but less frequent sampling 
across these sub-cohorts. If variability within such groups is reduced in compar-
ison to between-person fluctuations, molecular data from a larger cohort can be 
integrated to create a sensitive setting, enhancing early disease detection while 
reducing the burden of continuous monitoring. 

To construct such sub-cohorts for IMF data, individuals can be grouped 
based on measurable parameters such as anthropometric traits (e.g., age, sex, 
BMI) and blood clinical chemistry markers. The main challenge is identifying 
the combination of parameters that minimizes between-person variability (BPV), 
optimally to levels comparable to within-person variability (WPV). 

Toward this goal, we evaluated BPV and WPV across individuals, aiming 
to form groups where BPV approaches WPV. The Index of Individuality (IoI), 
defined as the ratio of WPV/BPV, is increased in these subgroups in com-
parison to the overall population. To assess the influence of various factors on 
IoI, we examined 27 blood parameters and 3 demographic variables individu-
ally. Subjects were divided into evenly populated groups based on the average 
values of each parameter across all visits, and the resulting IoI changes were 
used to rank the parameters by their significance. The top 10 blood parame-
ters and 3 demographic variables from this ranking were selected for further 
multivariate analysis, as detailed in Table 3. An optimization algorithm, avail-
able as an open-source Python package on GitHub [ 21], was then applied to 
the selected 13 variables, identifying optimal split points and iteratively refining 
group assignments to maximize IoI by minimizing BPV. The optimization algo-
rithm consisted of a hierarchical tree structure to define the grouping strategy. 
A back-pruning algorithm was applied to eliminate unnecessary subdivisions 
and prevent overfitting. This resulted in 252 groups, with an IoI increase of
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0.21, averaged across all groups and wavenumbers. The original and grouped 
IoI, BPV, and WPV distributions are visualized in Fig. 2. We show that, within 
these sub-cohorts, inter-individual variability approaches intra-individual levels. 
Due to the reduced variation in IMF data, such stratification could enable more 
precise disease detection and health monitoring. 

Fig. 3. Tetrahedral structure identified by the ParTI algorithm, with vertices repre-
senting four distinct archetypes. Colored ellipses indicate the uncertainty of archetype 
positions, estimated via bootstrap resampling, with shape and orientation determined 
by the covariance of the resampled positions. Results of enrichment analysis are shown 
adjacent to each archetype, listing variables significantly enriched near each vertex. 
Bold, enlarged entries mark variables most enriched in the bin closest to the archetype 
(P maximal > 0.5 for discrete variables or “Yes” for continuous ones). P-values for 
discrete variables were calculated using the hypergeometric test, and for continuous 
variables using the Mann-Whitney U-test. All variables shown remained significant 
after Benjamini-Hochberg correction. 

6 Towards Interpretable Individual Trajectories 

Originally developed in the context of evolutionary biology, ParTI was used to 
explain how phenotypes evolve under pressure to perform multiple conflicting
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tasks, such as in finch beak morphology, enzyme kinetics, or ant behavioral roles. 
In these systems, evolutionary trade-offs lead to phenotypic distributions form-
ing low-dimensional geometric shapes, with archetypes corresponding to task 
specialists [ 18]. While these tasks are classically ecological or developmental, the 
same conceptual framework can be extended to human health data: physiologi-
cal or metabolic states may be shaped by underlying constraints and trade-offs, 
such as immune function, metabolic regulation, or aging processes [ 19]. 

Thus, although ParTI was initially grounded in evolutionary theory, it offers 
a powerful lens for interpreting complex, high-dimensional datasets in biomedical 
settings. In this broader view, health states themselves can be seen as emergent 
outcomes of competing physiological demands, and archetypes as individuals or 
time points representing specialization in different health-related functions. This 
allows ParTI to bridge mechanistic understanding with clinical interpretation in 
longitudinal, multi-omics studies. 

Here, we applied ParTI—using the available MATLAB implementation [ 22]— 
to IMF and clinical chemistry panel data collected longitudinally to determine 
whether high-dimensional blood-based measurements could be structured into a 
geometry reflecting distinct health states. To explore this, we fitted ParTI using 
three feature sets: (i) IMF data alone, (ii) blood panel data alone, and (iii) a 
combination of both, with and without standard scaling, resulting in six config-
urations. Among these, only the model trained on unscaled IMF data yielded a 
statistically significant (p = 0.002) tetrahedral geometry. To assess whether this 
arrangement arose from random variation, we performed a permutation test by 
shuffling feature values across samples while preserving their distribution. By 
comparing the volume ratio of the archetypal tetrahedron to the convex hull 
across 10,000 randomized datasets, we confirmed that the observed structure 
was unlikely to occur by chance. Additionally, bootstrapping estimated vari-
ability in archetype positions, providing confidence intervals for the identified 
extreme states. 

To minimize systematic bias and ensure consistency in sample collection, pro-
cessing, and IMF data analysis, only data from one clinical site were used. The 
following analysis is based on a cohort comprising 3,583 IMF and blood panel 
profiles across five visits. After identifying archetypes, we conducted enrichment 
analysis using discrete and continuous variables from the longitudinal study, such 
as sex, comorbidities (e.g., hypertension, malignancies, respiratory diseases), and 
lifestyle habits like smoking and alcohol consumption. We also examined whether 
individuals’ positions within the tetrahedral space shifted over time, assessing 
both categorical (visit number) and continuous (days since the first visit) tem-
poral variables. 

In the case of unscaled IMF data, enrichment analysis revealed distinct demo-
graphic and physiological associations. For example, as illustrated in Fig. 3, 
Archetype 1 was linked to older males with higher BMI, while Archetype 2 
was enriched for females with low alcohol consumption. Additionally, systematic 
time-dependent shifts were observed, possibly related to device inconsistencies, 
with subjects’ first visits clustering near Archetype 4 and subsequent earlier
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measurements around Archetype 3. However, the lack of detailed lifestyle param-
eters (e.g., physical activity, mental well-being, nutrition) limits our ability to 
define archetypes associated with optimal health states. Furthermore, the rar-
ity of certain comorbidities in our relatively healthy cohort potentially obscured 
disease-related archetype associations. 

The identification of a robust tetrahedral structure in our dataset echoes find-
ings from a previous application of ParTI [ 19], where a similar geometry emerged 
with archetypes corresponding to sex-specific physiological profiles, reinforcing 
the reproducibility of ParTI across diverse biological settings and data types. 
This consistency underscores the method’s robustness and suggests its poten-
tial utility in future applications, such as tracking early deviations from typical 
health trajectories, stratifying populations based on physiological trade-offs, or 
monitoring personalized responses to interventions. As high-dimensional clini-
cal data becomes increasingly accessible, ParTI offers a principled, interpretable 
framework for uncovering the latent structure of human health. 

7 Discussion and Outlook 

These findings highlight that IMF data is a scalable and personalized tool for 
health monitoring and early disease detection. The observed stability and indi-
viduality of IMF profiles underscore their potential as robust biomarkers for 
tracking physiological changes over time. Additionally, reducing variability in 
IMF profiles by grouping molecularly similar individuals enables the develop-
ment of AI models that account for inter-individual differences while leverag-
ing population-level insights. Furthermore, identifying structured health states 
through Pareto Task Inference (ParTI) provides a framework for categorizing 
and interpreting individual health trajectories. This could facilitate early identi-
fication of deviations that indicate the onset of non-communicable diseases before 
symptoms manifest, and open avenues for future applications such as population 
stratification, early disease prediction, and personalized monitoring. While our 
current dataset lacked detailed lifestyle data, future studies could leverage richer 
metadata to link molecular archetypes to behavioral or environmental factors, 
enhancing clinical interpretability and utility. 
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