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Abstract. A common approach to precision medicine is stratifying indi-
viduals into homogeneous subgroups based on defined criteria. In previ-
ous studies, infrared molecular fingerprinting (IMF), a blood-based pro-
filing method that captures broad molecular information, has been pro-
posed for personalized health monitoring due to its low intra-individual 
variability relative to the population-level variability. In a personalized 
setting, deviations from the healthy state may thus be more sensitively 
captured. To enable this in practice, subgroups with reduced interper-
sonal variability must be identified. This study explores the existence, 
prediction, and explainability of such subgroups within IMFs. Using a 
cohort of 4032 healthy individuals with up to 5 visits each, we show that 
subgroups of reduced interpersonal variability exist. The first three prin-
cipal components (PCs) of the high-dimensional IMFs are sufficient to 
define subgroups where within-subgroup variability approaches the lev-
els of intra-individual variability. Machine learning models are trained 
to predict these PCs from routine clinical chemistry, IMF measurement 
parameters, and participants’ characteristics (demographics, lifestyle, 
and health-related variables). The PCs are successfully predicted with 
inaccuracies close to or below intra-individual variability. Using Shapley 
Additive Explanations, we identify key factors behind subgroup forma-
tion, ensuring interpretability. 
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1 Introduction 

Precision medicine aims to individualize clinical decision-making to improve 
patient outcomes. This can be achieved by leveraging subgroups of individu-
als similar to a patient of interest. This narrows the reference population to 
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
R. Bellazzi et al. (Eds.): AIME 2025, LNAI 15735, pp. 176–180, 2025. 
https://doi.org/10.1007/978-3-031-95841-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-95841-0_33&domain=pdf
http://orcid.org/0009-0006-8452-0346
http://orcid.org/0000-0002-6391-7743
http://orcid.org/0000-0002-6525-9449
https://doi.org/10.1007/978-3-031-95841-0_33


Towards Precision Medicine with Infrared Molecular Profiles 177

which the patient is compared and on which decisions are based, thus enabling 
more individualized conclusions [ 1]. Infrared molecular fingerprinting (IMF), a 
profiling method capturing a wide range of molecular information via vibrational 
spectroscopy of blood plasma, has been suggested as a candidate for personalized 
medicine. Owing to its generality, IMF may capture various health aberrations, 
as it has, e.g., been demonstrated for several cancer types [ 2, 3]. IMFs have been 
shown to be stable over clinically relevant timescales with significantly lower 
intra- than inter-individual variability. This makes the method suitable for a 
precision medicine setting [ 3]. 

For diagnostics or health monitoring, where deviations from a healthy state 
are to be sensed, we define subgroups as groups of reduced IMF variability com-
pared to the overall population. In these subgroups, the healthy state is more 
narrowly defined and may thus improve the sensitivity to health deviations. To 
apply this in clinical practice, subgroups must be determined using patient char-
acteristics, such as demographic, clinical, or lifestyle-related variables (hereafter 
referred to as markers). It is standard practice to define subgroups for a target 
outcome, here reduced IMF variability, using machine learning [ 5]. As a first step 
toward precision medicine with IMFs, this work investigates the existence and 
identification of subgroups of reduced IMF variability among healthy individuals 
while tackling the challenge of high-dimensional data by finding an appropriate 
low-dimensional representation. 

2 Methods 

Data. We use a longitudinal cohort of 4032 healthy individuals with four or 
five visits each [ 4]. For each individual, IMFs (493 features, see [ 3] for details on 
measurement and preprocessing, L1 instead of L2 normalization is used here) and 
standard clinical chemistry panels (27 parameters) are available. Additionally, 
information on demographics (3 markers), lifestyle (4 markers), and medical 
characteristics (14 markers) is at hand, alongside information on medications 
(70 types) and measurement parameters (8 markers). 

The Existence of Subgroups. First, principal component (PC) analysis is per-
formed to yield a low-dimensional representation of the IMFs. In this represen-
tation, the existence of subgroups is investigated by matching fingerprints. For 
this, a confidence interval per individual is constructed in the first few principal 
components, assuming Gaussian-distributed fingerprints. An IMF is defined as 
matching an individual if it lies within that person’s confidence interval. Vari-
ability between measurements and among or between individuals is reported via 
standard deviation. 

Predicting Subgroups. Machine-learning (ML) models are trained to predict the 
first five PCs from markers (one model per PC). The tested models include: lin-
ear regression (basic, lasso, ridge, elastic net), support vector regression, random 
forests, gradient boosting (XGB, LightGBM, sci-kit learn), and MLP regressor.
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Initially, all models are trained using a loose hyperparameter tuning and cross-
validation at different numbers of features (features ranked by mutual informa-
tion). The best-performing models (Ridge, LightGBM, XGB) are then selected 
for further refinement. Since all selected models are regularized, feature selec-
tion is skipped. For these models, hyperparameters are tuned using Bayesian 
search cross-validation. The final prediction models are then trained in a train-
test split (3226/15204 individuals/measurements for training and 806/3808 for 
testing for LightGBM and XGB, 1607/6654 and 419/1753 for Ridge regression 
due to missing marker values). To avoid information leakage, all measurements 
of one individual are assigned to either the train or the test/one fold of the 
cross-validation and the PC transformation is fitted on the train set only for the 
final models. 

Explaining Subgroups. Model predictions are explained on the test set using 
Shapley Additive Explanations (SHAP values) with an independent masker and 
reported aggregated over the models. To this end, the mean absolute SHAP 
values per marker are standardized by their sum per model, then weighted by 
the explained variance ratio of the corresponding PC and summed across PCs. 
The resulting values can be interpreted as the percentage of IMF variability 
attributed to each marker by the models. 

3 Results 

The Existence of Subgroups The first five PCs of the IMFs account for 94.5 % of 
the total variability (50.0 %, 25.1 %, 10.3 %, 5.7 %, and 3.4 %). Figure 1 (a) shows 
the number of matching measurements per individual when determining matches 
based on two, three, or four PCs. The number of matches rapidly declines with 
more PCs, with close to zero matches for four PCs. When investigating the 
between-measurement variability of matching measurements determined using 
three PCs at a confidence level of 0.95, it reaches levels of the within-person 
variability (see Fig. 1 b). It can be concluded that groups of matching fingerprints 
with strongly reduced variability exist and can be identified based on the first 
three PCs. 

Predicting Subgroups. Using the above findings, predicting the first three PCs 
is sufficient to define subgroups. To explore subgroup formation and the lack of 
matches when including PC four, the first five PCs are investigated in the follow-
ing. Figure 2 (a) shows the fine-tuned performance of the three best-performing 
ML models to predict the first five PCs. Intriguingly, the individual PCs can, 
on average, be predicted with an absolute error close to or even well below the 
within-person variability. Ridge regression performs best on average with the 
lowest variability, so all further analyses are based on this model. Figure 2 (b) 
illustrates true and predicted values of PCs 1 and 2 for four randomly selected 
individuals.
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Fig. 1. (a) Number of matching measurements per individual at different confidence 
levels. (b) Average within-person variability, between-person variability of the full pop-
ulation and between-measurement variability of matching measurements. Matching 
measurements are determined using 3 PCs and a confidence level of 0.95. 

Fig. 2. (a) Mean absolute error of predicting PCs using different ML models. (b) 
Illustration of true values, predictions, and confidence intervals. (c) SHAP values of 
highest scoring features for PCs 1–3 and 4–5 relative to the respective PCs. (d) SHAP 
values per category relative to the full IMFs’ variability. 

Explaining Subgroups. To explain the models’ predictions, the five most influen-
tial factors for PCs 1–3 and PCs 4–5 are investigated. Predictions for PCs 1–3 
mainly rely on blood parameters, while PCs 4–5 are mainly based on technical 
IMF measurement parameters. This dominance of measurement parameters in 
PCs 4–5 explains the lack of matches when including PCs 4–5 and their lim-
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ited relevance for reducing intra-group variability. Weighting SHAP values by 
the explained variance of each PC shows that blood parameters have by far 
the highest contribution (57.2 %), followed by measurement parameters (20.8 
%) and medical markers (4.3 %). Medications, lifestyle, and demographics con-
tribute close to 3 % each. 

4 Discussion and Outlook 

We showed that subgroups with variability close to the within-person variability 
exist within IMFs and found a low-dimensional representation to identify such 
groups of matching measurements. We further showed that this representation 
can be predicted with surprisingly low error from standard clinical data. Future 
work should jointly evaluate the PC predictions and assess the resulting intra-
group variability. To fully design a precision medicine setting for diagnostics or 
health monitoring using IMFs, a framework must be developed to move from 
matching measurements, as investigated here, to matching individuals while 
accommodating patients with potential disease. Whether the IMF subgroups 
based on the prediction of the first PCs yield a meaningful reduction in the 
reference range leading to enhanced diagnostic sensitivity must be explored in 
future work. Overall, our findings encourage the further investigation of IMFs 
for personalized medicine by showing that narrowed reference classes exist and 
can be identified. 

Disclosure of Interests. The authors have no competing interests to declare relevant 
to this article’s content. 
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